Anti-VEGFR Therapy as a Partner for Immune-Based Therapy Approaches in HCC

  • Kohei Shigeta
  • Tai Hato
  • Yunching Chen
  • Dan G. Duda
Chapter

Abstract

In hepatocellular carcinoma (HCC), chronic inflammation and vascular abnormalities often promote an environment characterized by hypoxia, immunosuppressive cell infiltration (M2-activated macrophages, T regulatory cells and myeloid-derived suppressor cells) and upregulation of immune checkpoints. These immunosuppressive cues lead to impaired effector CD8+ T lymphocyte infiltration and function, and ultimately to immune evasion. Reactivation of the immune response is critical to overcoming treatment resistance in HCC. Large clinical trials of anti-PD-1 blockade therapy are ongoing, and interim analyses showed promising responses in a subset of patients. The current challenge is to rationally combine anti-PD-1 antibodies with the existing drugs to substantially increase survival more broadly in HCC patients. Antiangiogenic multikinase inhibitors (sorafenib, regorafenib, lenvatinib) have shown efficacy in HCC. These drugs work in part by VEGF pathway inhibition in tumor endothelial cells, which can delay tumor growth. If the antivascular effects are too pronounced, treatment leads to increased hypoxia, inflammation, and fibrosis in the tumor tissues. These effects may affect anti-tumor immune response, which are critical for achieving durable treatment responses. Thus, successful implementation of combination therapies will require synergy between these interventions to reduce angiogenesis, modify vascular function, reverse the immunosuppressive environment and activate anti-tumor immunity in HCC.

Notes

Conflicts of Interest

DGD receives research funding from Merrimack, Leap Tx, Bristol-Meyers-Squibb and Bayer.

Funding

DGD’s work is supported through NIH grants P01-CA080124, R01-CA159258, R21-CA139168 and Proton Beam/Federal Share Program, and the American Cancer Society grant 120733-RSG-11- 073-01-TBG.

References

  1. 1.
    Killock D. Liver cancer: regorafenib – a new RESORCE in HCC. Nat Rev Clin Oncol. 2017;14:70–1.CrossRefPubMedGoogle Scholar
  2. 2.
    Ignacio M, Bruno S, Cheung YT, Chiun H, Masatoshi KSCT, et al. Nivolumab dose escalation and expansion in patients with advanced hepatocellular carcinoma (HCC): the CheckMate 040 study. 2017 Gastrointestinal Cancers Symposium 2017.Google Scholar
  3. 3.
    Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59:1435–47.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen Y, Duda DG. Targeting immunosuppression after standard sorafenib treatment to facilitate immune checkpoint blockade in hepatocellular carcinoma – an auto-commentary on clinical potential and future development. Oncoimmunology. 2015;4:e1029703.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33:559–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol. 2016;64:1090–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Moriguchi M, Umemura A, Itoh Y. Current status and future prospects of chemotherapy for advanced hepatocellular carcinoma. Clin J Gastroenterol. 2016;9:184–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol. 2013;31:4067–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312:57–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu AX, Baron AD, Malfertheiner P, Kudo M, Kawazoe S, Pezet D, et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma: analysis of REACH trial results by child-pugh score. JAMA Oncol. 2016.Google Scholar
  14. 14.
    Hubbard S. Exelixis announces outcome from analysis of the phase 3 CELESTIAL trial of cabozantinib in patients with advanced hepatocellular carcinoma. 2016.Google Scholar
  15. 15.
    Finn RS, Kang YK, Mulcahy M, Polite BN, Lim HY, Walters I, et al. Phase II, open-label study of brivanib as second-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18:2090–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31:3517–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31:3509–16.CrossRefPubMedGoogle Scholar
  18. 18.
    Cainap C, Qin S, Huang WT, Chung IJ, Pan H, Cheng Y, et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2015;33:172–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Rimassa L, Abbadessa G, Personeni N, Porta C, Borbath I, Daniele B, et al. Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib. Oncotarget. 2016;7:72622–33.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Pievsky D, Pyrsopoulos N. Profile of tivantinib and its potential in the treatment of hepatocellular carcinoma: the evidence to date. J Hepatocell Carcinoma. 2016;3:69–76.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ikeda M, Okusaka T, Mitsunaga S, Ueno H, Tamai T, Suzuki T, et al. Safety and pharmacokinetics of lenvatinib in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2016;22:1385–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2016.Google Scholar
  23. 23.
    Eisai Co. L. PHASE III trial of anticancer agent lenvima® as first-line treatment for unresectable hepatocellular carcinoma meets primary endpoint. 2017.Google Scholar
  24. 24.
    Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, et al. C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci U S A. 2011;108:302–7.CrossRefPubMedGoogle Scholar
  25. 25.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19:6678–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakamoto N, Cho H, Shaked A, Olthoff K, Valiga ME, Kaminski M, et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 2009;5:e1000313.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol. 2009;83:9122–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schurich A, Khanna P, Lopes AR, Han KJ, Peppa D, Micco L, et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology. 2011;53:1494–503.CrossRefPubMedGoogle Scholar
  30. 30.
    Ormandy LA, Farber A, Cantz T, Petrykowska S, Wedemeyer H, Horning M, et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol. 2006;12:3275–82.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60:1776–82.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kohei Shigeta
    • 1
  • Tai Hato
    • 1
  • Yunching Chen
    • 1
  • Dan G. Duda
    • 1
  1. 1.E.L. Steele Laboratories for Tumor Biology, Department of Radiation OncologyMassachusetts General Hospital Cancer Center, Harvard Medical SchoolBostonUSA

Personalised recommendations