Immune Checkpoint Inhibitors for the Treatment of Hepatocellular Carcinoma

  • Mercedes Iñarrairaegui
  • Delia D’Avola
  • Bruno Sangro
Chapter

Abstract

Immune checkpoints are membrane-bound molecules that provide fine-tuning of the complex process of immune response against cancer. From a therapeutic perspective, interaction with checkpoint molecules has revolutionized the field of cancer therapy. Attention has focused in two players, CTLA-4 and PD-1. The former is essential for the activation of CD4+ T cells and the priming phase of the immune response while the latter inhibits CD4+ and CD8+ T cell activation. In patients with hepatocellular carcinoma, there is substantial evidence that supports a relevant role of immune checkpoints in the absence of an effective antitumor immune response. These negative signals can be blocked with the use of monoclonal antibodies. While CTLA-4 blockade first produced encouraging signals of antitumor activity, PD-1 blockade results in consistent tumor responses and prolonged stabilizations that lead to substantial prolongation of survival among patients with advanced tumors. This has fueled the interest in developing better therapeutic strategies through combinations of immune-oncology agents and combinations of such agents with targeted agents that may act synergistically.

Notes

Conflicts of Interest

Bruno Sangro has received consulting and/or lecture fees from Adaptimmune, Astra Zeneca, Bayer Healthcare, Bristol-Myers-Squibb, and Medimmune.

Funding

Delia D’Avola is the recipient of the Grant for Study Expansion from the Spanish Association for the Study of the Liver (Asociación Espanola para el Estudio del Hígado AEEH) and Cancer Research Grant from Nuovo Soldati Foundation. This work was supported by EC FP7 Project Cancer Vaccine development for Hepatocellular Carcinoma – HEPAVAC (Grant Nr. 602,893), EC H2020 Project Immunology and Immunotherapy of cancer: strengthening the translational aspect – HepaMUT (Grant Nr. AC16/00165), and project PI16/01845, integrated in Plan Estatal de I + D + I 2013–2016 and co-financed by ISCIII-Subdirección General de Evaluación y Fomento de la investigación and Fondo Europeo de Desarrollo Regional (FEDER).

References

  1. 1.
    Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67:731–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.CrossRefPubMedGoogle Scholar
  4. 4.
    Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Hepatol. 2015;12:681–700.CrossRefGoogle Scholar
  5. 5.
    Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front Immunol. 2015;6:418.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, et al. Human CD14+CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59:567–79.CrossRefPubMedGoogle Scholar
  8. 8.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res. 2014;2:393–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3 – potential mechanisms of action. Nat Rev Immunol [Internet]. 2015;15:45–56.CrossRefGoogle Scholar
  11. 11.
    Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171:1393–405.CrossRefPubMedGoogle Scholar
  12. 12.
    Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005;6:90–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003;4:670–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59:1415–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, et al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol. 2006;45:246–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27:407–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Gao Q, Qiu S-J, Fan J, Zhou J, Wang X-Y, Xiao Y-S, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, et al. Increase in CD14+HLA-DR −/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62:1421–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J cancer. 2011;128:887–96.CrossRefPubMedGoogle Scholar
  20. 20.
    Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Li FJ, Zhang Y, Jin GX, Yao L, Wu DQ. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8+ T cell in HCC patients. Immunol Lett. 2013;150:116–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56:1342–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, et al. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;1–12.Google Scholar
  24. 24.
    Hokuto D, Sho M, Yamato I, Yasuda S, Obara S, Nomi T, et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur J Cancer. 2015;51:157–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao Q, Huang Z-L, He M, Gao Z, Kuang D-M. BTLA identifies dysfunctional PD-1-expressing CD4+ T cells in human hepatocellular carcinoma. Oncoimmunology. 2016;5Google Scholar
  26. 26.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMedGoogle Scholar
  27. 27.
    George S, Motzer RJ, Hammers HJ, Redman BG, Kuzel TM, Tykodi SS, et al. Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: a subgroup analysis of a randomized clinical trial. JAMA Oncol. 2016;2:1179–86.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Petrylak DP, Powles T, Bellmunt J, Braiteh FS, Loriot Y, Zambrano C, et al. A phase Ia study of MPDL3280A (anti-PDL1): updated response and survival data in urothelial bladder cancer (UBC). J Clin Oncol. 2015;Suppl 33: Abstr 4501.Google Scholar
  30. 30.
    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838–45.CrossRefGoogle Scholar
  32. 32.
    Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Kavanagh B, O’Brien S, Lee D, Hou Y, Weinberg V, Rini B, et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4 + T cells in a dose-dependent fashion. Blood. 2008;112:1175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Duffy AG, Ulahannan SV, Makorova-Rusher O, Wedemeyer H, Pratt D, Davis JL, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66:545–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Sprinzl MF, Galle PR. Current progress in immunotherapy of hepatocellular carcinoma. J Hepatol [Internet]. 2017;66:482–4.CrossRefGoogle Scholar
  37. 37.
    Wang B-J, Bao J-J, Wang J-Z, Wang Y, Jiang M, Xing M-Y, et al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 2011;17:3322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    El-Khoueiry A, Sangro B, Yau T, Crocenzi T, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.CrossRefPubMedGoogle Scholar
  39. 39.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Segal HN, Scott A, Brahmer JR, Maio M, Blake-Haskins A, Li X, et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J Clin Oncol. 2014;32:5s abstr 3002.Google Scholar
  41. 41.
    Morales-Kastresana A, Sanmamed MF, Rodriguez I, Palazon A, Martinez-Forero I, Labiano S, et al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res. 2013;19:6151–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Hu-Lieskovan S, Robert L, Moreno BH, Ribas A. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol. 2014;32:2248–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol. 2011;344:129–48.PubMedGoogle Scholar
  44. 44.
    Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150:1646–1658.e17.CrossRefPubMedGoogle Scholar
  47. 47.
    Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26:234–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Victor CT-S, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31:3509–16.CrossRefPubMedGoogle Scholar
  53. 53.
    Santoro A, Simonelli M, Rodriguez-Lope C, Zucali P, Camacho LH, Granito A, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312:57–67.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu AX, Park JO, Ryoo BY, Yen CJ, Poon R, Pastorelli D, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16:859–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mercedes Iñarrairaegui
    • 1
    • 2
  • Delia D’Avola
    • 1
    • 2
  • Bruno Sangro
    • 1
    • 2
  1. 1.LiverUnitClínica Universidad de Navarra-IDISNAPamplonaSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)PamplonaSpain

Personalised recommendations