Abstract
Estimating 3D structure of the scene from a single image remains a challenging problem in computer vision. This paper proposes a novel approach to obtain a global depth order of objects by incorporating monocular perceptual cues such as T-junctions and object boundary convexity, which are local indicators of occlusions, together with physical cues, namely ground contact points. The proposed combination of these local cues complement each other and creates a more thorough partial depth order relationship. The different partial orders are then robustly aggregated using a Markov random chain approximation to obtain the most plausible global depth order. Experiments show that the proposed method excels in comparison to state of the art methods.
Keywords
- Monocular depth
- Ordinal depth
- Depth layering
- Occlusion reasoning
- Convexity
- T-junctions
- Boundary ownership
- 2.1D
This is a preview of subscription content, access via your institution.
Buying options











References
Matheron, G.: Modèle séquentiel de partition aléatoire. Technical report, CMM (1968)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622. ACM (2001)
Basha, T., Moses, Y., Avidan, S.: Photo sequencing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 654–667. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_47
Guzmán, A.: Decomposition of a visual scene into three-dimensional bodies. In: Proceeding AFIPS 1968 (Fall, part I) (1968)
Malik, J.: Interpreting line drawings of curved objects. Int. J. Comput. Vis. 1(1), 73–103 (1987)
Rubin, N.: Figure and ground in the brain. Nat. Neurosci. 4, 857–858 (2001)
Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)
Marr, D.: Vision: A Computational Approach. Freeman & Co., San Francisco (1982)
Nitzberg, M., Mumford, D.: The 2.1-D sketch. In: Proceedings of Third International Conference on Computer Vision, pp. 138–144. IEEE (1990)
Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth. LNCS, vol. 662. Springer, Heidelberg (1993)
Gao, R.-X., Wu, T.-F., Zhu, S.-C., Sang, N.: Bayesian inference for layer representation with mixed markov random field. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 213–224. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74198-5_17
Palou, G., Salembier, P.: Occlusion-based depth ordering on monocular images with binary partition tree. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1093–1096. IEEE (2011)
Esedoglu, S., March, R.: Segmentation with depth but without detecting junctions. J. Math. Imaging Vis. 18, 7–15 (2003)
Pao, H., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: 1999 The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 948–955. IEEE (1999)
Dimiccoli, M., Morel, J.M., Salembier, P.: Monocular depth by nonlinear diffusion. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, ICVGIP 2008, pp. 95–102. IEEE (2008)
Calderero, F., Caselles, V.: Recovering relative depth from low-level features without explicit t-junction detection and interpretation. Int. J. Comput. Vis. 104, 38–68 (2013)
Palou, G., Salembier, P.: Monocular depth ordering using t-junctions and convexity occlusion cues. IEEE Trans. Image Process. 22, 1926–1939 (2013)
Burge, J., Fowlkes, C., Banks, M.: Natural-scene statistics predict how the figure-ground cue of convexity affects human depth perception. J. Neurosci. 30, 7269–7280 (2010)
Dimiccoli, M., Salembier, P.: Hierarchical region-based representation for segmentation and filtering with depth in single images. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3533–3536 (2009)
Zeng, Q., Chen, W., Wang, H., Tu, C., Cohen-Or, D., Lischinski, D., Chen, B.: Hallucinating stereoscopy from a single image. In: Computer Graphics Forum, vol. 34, pp. 1–12. Wiley Online Library (2015)
Jia, Z., Gallagher, A., Chang, Y., Chen, T.: A learning-based framework for depth ordering. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 294–301. IEEE (2012)
McDermott, J.: Psychophysics with junctions in real images. Perception 33, 1101–1127 (2004)
Caselles, V., Coll, B., Morel, J.: Topographic maps and local contrast changes in natural images. Int. J. Comput. Vis. 33, 5–27 (1999)
Serra, J.: Introduction to mathematical morphology. Comput. Vis. Graph. Image Process. 35(3), 283–305 (1986)
Dimiccoli, M., Salembier, P.: Exploiting t-junctions for depth segregation in single images. In: Acoustics, Speech and Signal Processing, pp. 1229–1232 (2009)
Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 397–410. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19315-6_31
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)
Acknowledgements
The authors acknowledge partial support by the MINECO/FEDER project with reference TIN2015-70410-C2-1-R, the MICINN project with reference MTM2012-30772, and by GRC reference 2014 SGR 1301, Generalitat de Catalunya.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rezaeirowshan, B., Ballester, C., Haro, G. (2017). From Occlusion to Global Depth Order, a Monocular Approach. In: , et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-64870-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64869-9
Online ISBN: 978-3-319-64870-5
eBook Packages: Computer ScienceComputer Science (R0)