Skip to main content

A Detailed Description of Direct Stereo Visual Odometry Based on Lines

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)

Abstract

In this paper, we propose a direct stereo visual odometry method which uses vertical lines to estimate consecutive camera poses. Therefore, it is well suited for poorly textured indoor environments where point-based methods may fail. We introduce a fast line segment detector and matcher detecting vertical lines, which occur frequently in man-made environments. We estimate the pose of the camera by directly minimizing the photometric error of the patches around the detected lines. In cases where not sufficient lines could be detected, point features are used as fallback solution. As our algorithm runs in real-time, it is well suited for robotics and augmented reality applications. In our experiments, we show that our algorithm outperforms state-of-the-art methods on poorly textured indoor scenes and delivers comparable results on well textured outdoor scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper is a revised and extended version of [3].

References

  1. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: IEEE Intelligent Vehicles Symposion (2011)

    Google Scholar 

  2. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular slam. In: Proceedings of European Conference on Computer Vision (2014)

    Google Scholar 

  3. Holzmann, T., Fraundorfer, F., Bischof, H.: Direct stereo visual odometry based on lines. In: 11th International Conference on Computer Vision Theory and Application (VISAPP) (2016)

    Google Scholar 

  4. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of International Symposium on Mixed and Augmented Reality (2007)

    Google Scholar 

  5. Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: RSLAM: a system for large-scale mapping in constant-time using stereo. Int. J. Comput. Vis. 94, 198–214 (2010)

    Article  Google Scholar 

  6. Weiss, S., Achtelik, M.W., Lynen, S., Achtelik, M.C., Kneip, L., Chli, M., Siegwart, R.: Monocular vision for long-term micro aerial vehicle state estimation: a compendium. J. Field Robot. 30, 803–831 (2013)

    Article  Google Scholar 

  7. Elqursh, A., Elgammal, A.M.: Line-based relative pose estimation. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 3049–3056. IEEE Computer Society (2011)

    Google Scholar 

  8. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Proceedings of International Conference on Computer Vision, pp. 2320–2327 (2011)

    Google Scholar 

  9. Engel, J., Stückler, J., Cremers, D.: Large-scale direct SLAM with stereo cameras. In: International Conference on Intelligent Robots and Systems (2015)

    Google Scholar 

  10. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: International Conference on Robotics and Automation (2014)

    Google Scholar 

  11. Grompone, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32, 722–732 (2010)

    Article  Google Scholar 

  12. Hofer, M., Maurer, M., Bischof, H.: Improving sparse 3D models for man-made environments using line-based 3D reconstruction. In: International Conference on 3D Vision (2014)

    Google Scholar 

  13. Cortinovis, A.: PIXHAWK - attitude and position estimation from vision and IMU measurements for quadrotor control. Technical report, Computer Vision and Geometry Lab, Swiss Federal Institute of Technology (ETH) Zurich (2010)

    Google Scholar 

  14. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Proceedings of International Conference on Computer Vision (2005)

    Google Scholar 

  15. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  16. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D.G., Tardos, J.D.: RAWSEEDS: robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In: International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  19. Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi, D., Sorrenti, D.G., Taddei, P.: Rawseeds ground truth collection systems for indoor self-localization and mapping. Auton. Robots 27, 353–371 (2009)

    Article  Google Scholar 

  20. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  21. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org

  22. Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for multi-sensor systems. In: International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  23. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

Download references

Acknowledgements

This project has been supported by the Austrian Science Fund (FWF) in the project V-MAV (I-1537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Holzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Holzmann, T., Fraundorfer, F., Bischof, H. (2017). A Detailed Description of Direct Stereo Visual Odometry Based on Lines. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64870-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64869-9

  • Online ISBN: 978-3-319-64870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics