Abstract
Visual data exploration is used to reveal unknown patterns that, however, need to be validated, refined, and extracted for a final presentation and reporting. We contribute VESPa, a pattern-based visual query language for event sequences. With VESPa, analysts can formulate hypotheses gained and query the data for matches. In an interative analysis loop the pattern can be altered with further restrictions to narrow down the result set. Our language allows for (1) hypothesis expression and refinement, (2) visual querying, and (3) knowledge externalization. We focus on semantically enrichend movement data, used in law enforcement, consumer, and traffic analysis. To evaluate the applicability we present two case studies as well as a user study consisting of comprehensive and composition tasks.
Keywords
- Visual query language
- Semantic movement analysis
This publication is an extended version of our IVAPP 2016 paper [1]
This is a preview of subscription content, access via your institution.
Buying options













Notes
- 1.
For this paper, colors were chosen so as to be distinguishable both on colored and greyscale printouts. Conceptually, alternative color schemes can be chosen that are specific to user requirements, for instance, color blindness.
References
Haag, F., Krüger, R., Ertl, T.: VESPa: a pattern-based visual query language for event sequences. In: Proceedings of the 7th International Conference on Information Visualization Theory and Applications (IVAp. 2016), vol. 7 (2016)
Wongsuphasawat, K., Plaisant, C., Taieb-Maimon, M., Shneiderman, B.: Querying event sequences by exact match or similarity search: design and empirical evaluation. Interact. Comput. 24, 55–68 (2012)
Zgraggen, E., Drucker, S.M., Fisher, D., DeLine, R.: (s|qu)eries: Visual regular expressions for querying and exploring event sequences. In: Proceedings of CHI 2015, pp. 2683–2692. ACM (2015)
Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis, MITRE, pp. 2–4 (2005)
Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: Storage and retrieval of system log events using a structured schema based on message type transformation. In: Proceedings of SAC 2011, pp. 528–533. ACM (2011)
Gaaloul, W., Bhiri, S., Godart, C.: Discovering workflow transactional behavior from event-based log. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 3–18. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30468-5_3
Abela, J., Debeaupuis, T., Consultants, H.S.: Universal format for logger messages (1999). http://tools.ietf.org/html/draft-abela-ulm-05
Do, Q.X., Lu, W., Roth, D.: Joint inference for event timeline construction. In: Proceedings of EMNLP-CoNLL 2012, pp. 677–687. ACL (2012)
Atrey, P., Maddage, M., Kankanhalli, M.: Audio based event detection for multimedia surveillance. In: Proceedings of ICASSP 2006, vol. 5, pp. 813–816. IEEE (2006)
Heydekorn, J., Nitsche, M., Dachselt, R., Nürnberger, A.: On the interactive visualization of a logistics scenario: requirements and possible solutions. In: Proceedings of IWDE 2011, pp. 1–7. Technical report (Internet): Elektronische Zeitschriftenreihe der Fakultät für Informatik der OVGU Magdeburg (2011)
Kim, P.H., Giunchiglia, F.: Life logging practice for human behavior modeling. In: Proceedings of SMC 2012, pp. 2873–2878 (2012)
Atrey, P.K., Kankanhalli, M.S., Jain, R.: Timeline-based information assimilation in multimedia surveillance and monitoring systems. In: Proceedings of VSSN 2005, pp. 103–112. ACM (2005)
Peuquet, D.J., Duan, N.: An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int. J. Geogr. Inf. Syst. 9, 7–24 (1995)
Huang, Y., Zhang, L., Zhang, P.: A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Trans. Knowl. Data Eng. 20, 433–448 (2008)
Jiang, F., Yuan, J., Tsaftaris, S.A., Katsaggelos, A.K.: Anomalous video event detection using spatiotemporal context. Comput. Vision Image Underst. 115, 323–333 (2011)
Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B.: LifeLines: visualizing personal histories. In: Proceedings of CHI 1996, pp. 221–227. ACM (1996)
Kumar, V., Furuta, R., Allen, R.B.: Metadata visualization for digital libraries: interactive timeline editing and review. In: Proceedings of DL 1998, pp. 126–133. ACM (1998)
Tao, C., Wongsuphasawat, K., Clark, K., Plaisant, C., Shneiderman, B., Chute, C.G.: Towards event sequence representation, reasoning and visualization for EHR data. In: Proceedings of IHI 2012, pp. 801–806. ACM (2012)
Krstajić, M., Bertini, E., Keim, D.: CloudLines: compact display of event episodes in multiple time-series. IEEE TVCG 17, 2432–2439 (2011)
Fischer, F., Mansmann, F., Keim, D.A.: Real-time visual analytics for event data streams. In: Proceedings of SAC 2012, pp. 801–806. ACM (2012)
Havre, S., Hetzler, B., Nowell, L.: ThemeRiver: visualizing theme changes over time. In: Proceedings of InfoVis 2000, pp. 115–123. IEEE (2000)
Guo, X., Li, J., Yang, R., Ma, X.: NEI: a framework for dynamic news event exploration and visualization. In: Proceedings of VINCI 2014, pp. 121–128. ACM (2014)
Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of CHI 2011, pp. 227–236. ACM (2011)
Kapler, T., Wright, W.: GeoTime information visualization. Inf. Vis. 4, 136–146 (2005)
Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visualization of trajectory attribute data. IEEE TVCG 18, 2565–2574 (2012)
Guo, H., Wang, Z., Yu, B., Zhao, H., Yuan, X.: TripVista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Proceedings of PacificVis 2011, pp. 163–170. IEEE (2011)
Sun, G., Liu, Y., Wu, W., Liang, R., Qu, H.: Embedding temporal display into maps for occlusion-free visualization of spatio-temporal data. In: Proceedings of PacificVis 2014, pp. 185–192. IEEE (2014)
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45, 42:1–42:32 (2013)
Krüger, R., Thom, D., Ertl, T.: Visual analysis of movement behavior using web data for context enrichment. In: Proceedings of PacificVis 2014, pp. 193–200. IEEE (2014)
Zhu, X.Y., Guo, W., Huang, L., Hu, T., Gao, W.X.: Pan-information location map. ISPRS Archives XL–4, 57–62 (2013)
Nguyen, T., Loke, S., Torabi, T.: The community stack: concept and prototype. In: Proceedings of AINAW 2007, vol. 2, pp. 52–58 (2007)
Westermann, U., Jain, R.: Toward a common event model for multimedia applications. IEEE Multimedia 14, 19–29 (2007)
Andrienko, N., Andrienko, G., Fuchs, G.: Towards privacy-preserving semantic mobility analysis. In: EuroVis Workshop on Visual Analytics, pp. 19–23. Eurographics Association (2013)
Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Softw. 11, 70–77 (1994)
Seifert, I.: A pool of queries: interactive multidimensional query visualization for information seeking in digital libraries. Inf. Vis. 10, 97–106 (2011)
Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: OptiqueVQS: towards an ontology-based visual query system for big data. In: Proceedings of MEDES 2013, pp. 119–126. ACM (2013)
Russell, A., Smart, P., Braines, D., Shadbolt, N.: NITELIGHT: a graphical tool for semantic query construction. In: Proceedings of SWUI 2008, vol. 543 of CEUR-WS (2008)
Morris, A., Abdelmoty, A., El-Geresy, B., Jones, C.: A filter flow visual querying language and interface for spatial databases. GeoInformatica 8, 107–141 (2004)
Wu, S., Otmane, S., Moreau, G., Servières, M.: Design of a visual query language for geographic information system on a touch screen. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8007, pp. 530–539. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39330-3_57
Kumar, C., Heuten, W., Boll, S.: Geographical queries beyond conventional boundaries: regional search and exploration. In: Proceedings of GIR 2013, pp. 84–85. ACM (2013)
Boyandin, I., Bertini, E., Bak, P., Lalanne, D.: Flowstrates: an approach for visual exploration of temporal origin-destination data. Comput. Graph. Forum 30, 971–980 (2011)
Certo, L., Galvão, T., Borges, J.: Time automaton: a visual mechanism for temporal querying. J. Visual Lang. Comput. 24, 24–36 (2013)
Krüger, R., Thom, D., Wörner, M., Bosch, H., Ertl, T.: TrajectoryLenses - a set-based filtering and exploration technique for long-term trajectory data. Comput. Graph. Forum 2013, 451–460 (2013)
Bonhomme, C., Trépied, C., Aufaure, M.A., Laurini, R.: A visual language for querying spatio-temporal databases. In: Proceedings of GIS 1999, pp. 34–39. ACM (1999)
D’Ulizia, A., Ferri, F., Grifoni, P.: Moving GeoPQL: a pictorial language towards spatio-temporal queries. GeoInformatica 16, 357–389 (2012)
Monroe, M., Lan, R., Morales del Olmo, J., Shneiderman, B., Plaisant, C., Millstein, J.: The challenges of specifying intervals and absences in temporal queries: a graphical language approach. In: Proceedings of CHI 2013, pp. 2349–2358. ACM (2013)
Gotz, D., Stavropoulos, H.: DecisionFlow: visual analytics for high-dimensional temporal event sequence data. IEEE TVCG 20, 1783–1792 (2014)
Fails, J., Karlson, A., Shahamat, L., Shneiderman, B.: A visual interface for multivariate temporal data: finding patterns of events across multiple histories. In: VAST 2006, pp. 167–174 (2006)
Dionisio, J.D., Cárdenas, A.F.: MQuery: a visual query language for multimedia, timeline and simulation data. J. Visual Lang. Comput. 7, 377–401 (1996)
Jin, J., Szekely, P.: QueryMarvel: a visual query language for temporal patterns using comic strips. In: Proc. VL/HCC 2009, pp. 207–214 (2009)
Fegeras, L.: VOODOO: a visual object-oriented database language for ODMG OQL. In: W13. The First ECOOP Workshop on Object-Oriented Databases (1999)
Visual Analytics Community: VAST 2014 Challenge - the Kronos incident (2014). http://vacommunity.org/VAST+Challenge+2014
Krüger, R., Herr, D., Haag, F., Ertl, T.: Inspector gadget: integrating data preprocessing and orchestration in the visual analysis loop. In: EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association (2015)
Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAWDAD data set roma/taxi (v. 2014–07-17) (2014). http://crawdad.org/roma/taxi/
Acknowledgements
This work was supported by the Horizon 2020 project CIMPLEX, grant no. 641191.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Haag, F., Krüger, R., Ertl, T. (2017). Visual Querying of Semantically Enriched Movement Data. In: , et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-64870-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64869-9
Online ISBN: 978-3-319-64870-5
eBook Packages: Computer ScienceComputer Science (R0)