Advertisement

Matrix Algebra pp 185-225 | Cite as

Vector/Matrix Derivatives and Integrals

  • James E. Gentle
Chapter
  • 5.9k Downloads
Part of the Springer Texts in Statistics book series (STS)

Abstract

The operations of differentiation and integration of vectors and matrices are logical extensions of the corresponding operations on scalars.

References

  1. Anderson, T. W. 2003. An Introduction to Multivariate Statistical Analysis, 3rd ed. New York: John Wiley and Sons.zbMATHGoogle Scholar
  2. Birkhoff, Garrett, and Surender Gulati. 1979. Isotropic distributions of test matrices. Journal of Applied Mathematics and Physics (ZAMP) 30:148–158.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Carmeli, Moshe. 1983. Statistical Theory and Random Matrices. New York: Marcel Dekker, Inc.zbMATHGoogle Scholar
  4. Griva, Igor, Stephen G. Nash, and Ariela Sofer. 2009. Linear and Nonlinear Optimization, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefzbMATHGoogle Scholar
  5. Heiberger, Richard M. 1978. Algorithm AS127: Generation of random orthogonal matrices. Applied Statistics 27:199–205.CrossRefzbMATHGoogle Scholar
  6. Higham, Nicholas J. 2008. Functions of Matrices. Theory and Computation. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefzbMATHGoogle Scholar
  7. Kollo, Tõnu, and Dietrich von Rosen. 2005. Advanced Multivariate Statistics with Matrices. Amsterdam: Springer.CrossRefzbMATHGoogle Scholar
  8. Magnus, Jan R., and Heinz Neudecker. 1999. Matrix Differential Calculus with Applications in Statistics and Econometrics, revised ed. New York: John Wiley and Sons.zbMATHGoogle Scholar
  9. Muirhead, Robb J. 1982. Aspects of Multivariate Statistical Theory. New York: John Wiley and Sons.CrossRefzbMATHGoogle Scholar
  10. Nachbin, Leopoldo. 1965. The Haar Integral, translated by Lulu Bechtolsheim. Princeton, New Jersey: D. Van Nostrand Co Inc.zbMATHGoogle Scholar
  11. Shao, Jun. 2003. Mathematical Statistics, 2nd ed. New York: Springer-Verlag.Google Scholar
  12. Stewart, G. W. 1980. The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal of Numerical Analysis 17:403–409.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Tanner, M. A., and R. A. Thisted. 1982. A remark on AS127. Generation of random orthogonal matrices. Applied Statistics 31:190–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • James E. Gentle
    • 1
  1. 1.FairfaxUSA

Personalised recommendations