Advertisement

Matrix Algebra pp 523-538 | Cite as

Numerical Linear Algebra

  • James E. Gentle
Chapter
  • 5.9k Downloads
Part of the Springer Texts in Statistics book series (STS)

Abstract

Many scientific computational problems in various areas of application involve vectors and matrices. Programming languages such as C provide the capabilities for working with the individual elements but not directly with the arrays. Modern Fortran and higher-level languages such as Octave or Matlab and R allow direct manipulation of objects that represent vectors and matrices. The vectors and matrices are arrays of floating-point numbers.

References

  1. Abramowitz, Milton, and Irene A. Stegun, eds. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington: National Bureau of Standards (NIST). (Reprinted in 1965 by Dover Publications, Inc., New York.)Google Scholar
  2. Alefeld, Göltz, and Jürgen Herzberger. (1983). Introduction to Interval Computation. New York: Academic Press.zbMATHGoogle Scholar
  3. Ammann, Larry, and John Van Ness. 1988. A routine for converting regression algorithms into corresponding orthogonal regression algorithms. ACM Transactions on Mathematical Software 14:76–87.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Anda, Andrew A., and Haesun Park. 1994. Fast plane rotations with dynamic scaling. SIAM Journal of Matrix Analysis and Applications 15:162–174.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anda, Andrew A., and Haesun Park. 1996. Self-scaling fast rotations for stiff least squares problems. Linear Algebra and Its Applications 234:137–162.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Anderson, E., Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenhaum, S. Hammarling, A. McKenney, and D. Sorensen. 2000. LAPACK Users’ Guide, 3rd ed. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHGoogle Scholar
  7. Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate nomal distributions. Annals of Mthematical Statistics 22:327–351.zbMATHCrossRefGoogle Scholar
  8. Anderson, T. W. 2003. An Introduction to Multivariate Statistical Analysis, 3rd ed. New York: John Wiley and Sons.zbMATHGoogle Scholar
  9. ANSI. 1978. American National Standard for Information Systems — Programming Language FORTRAN, Document X3.9-1978. New York: American National Standards Institute.Google Scholar
  10. ANSI. 1989. American National Standard for Information Systems — Programming Language C, Document X3.159-1989. New York: American National Standards Institute.Google Scholar
  11. ANSI. 1992. American National Standard for Information Systems — Programming Language Fortran-90, Document X3.9-1992. New York: American National Standards Institute.Google Scholar
  12. ANSI. 1998. American National Standard for Information Systems — Programming Language C++, Document ISO/IEC 14882-1998. New York: American National Standards Institute.Google Scholar
  13. Atkinson, A. C., and A. N. Donev. 1992. Optimum Experimental Designs. Oxford, United Kingdom: Oxford University Press.zbMATHGoogle Scholar
  14. Attaway, Stormy. 2016. Matlab: A Practical Introduction to Programming and Problem Solving, 4th ed. Oxford, United Kingdom: Butterworth-Heinemann.Google Scholar
  15. Bailey, David H. 1993. Algorithm 719: Multiprecision translation and execution of FORTRAN programs. ACM Transactions on Mathematical Software 19:288–319.zbMATHCrossRefGoogle Scholar
  16. Bailey, David H. 1995. A Fortran 90-based multiprecision system. ACM Transactions on Mathematical Software 21:379–387.zbMATHCrossRefGoogle Scholar
  17. Bailey, David H., King Lee, and Horst D. Simon. 1990. Using Strassen’s algorithm to accelerate the solution of linear systems. Journal of Supercomputing 4:358–371.CrossRefGoogle Scholar
  18. Bapat, R. B., and T. E. S. Raghavan. 1997. Nonnegative Matrices and Applications. Cambridge, United Kingdom: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  19. Barker, V. A., L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M. Marinova, J. Wasniewsk, and P. Yalamov. 2001. LAPACK95 Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  20. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  21. Basilevsky, A. 1983. Applied Matrix Algebra in the Statistical Sciences. New York: North HollandzbMATHGoogle Scholar
  22. Beaton, Albert E., Donald B. Rubin, and John L. Barone. 1976. The acceptability of regression solutions: Another look at computational accuracy. Journal of the American Statistical Association 71:158–168.zbMATHCrossRefGoogle Scholar
  23. Benzi, Michele. 2002. Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182:418–477.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Bickel, Peter J., and Joseph A. Yahav. 1988. Richardson extrapolation and the bootstrap. Journal of the American Statistical Association 83:387–393.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Bindel, David, James Demmel, William Kahan, and Osni Marques. 2002. On computing Givens rotations reliably and efficiently. ACM Transactions on Mathematical Software 28:206–238.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Birkhoff, Garrett, and Surender Gulati. 1979. Isotropic distributions of test matrices. Journal of Applied Mathematics and Physics (ZAMP) 30:148–158.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Bischof, Christian H. 1990. Incremental condition estimation. SIAM Journal of Matrix Analysis and Applications 11:312–322.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Bischof, Christian H., and Gregorio Quintana-Ortí. 1998a. Computing rank-revealing QR factorizations. ACM Transactions on Mathematical Software 24:226–253.Google Scholar
  29. Bischof, Christian H., and Gregorio Quintana-Ortí. 1998b. Algorithm 782: Codes for rank-revealing QR factorizations of dense matrices. ACM Transactions on Mathematical Software 24:254–257.Google Scholar
  30. Björck, Åke. 1967. Solving least squares problems by Gram-Schmidt orthogonalization. BIT 7:1–21.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Björck, Åke. 1996. Numerical Methods for Least Squares Problems. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  32. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1997a. ScaLAPACK Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  33. Blackford, L. S., A. Cleary, A. Petitet, R. C. Whaley, J. Demmel, I. Dhillon, H. Ren, K. Stanley, J. Dongarra, and S. Hammarling. 1997b. Practical experience in the numerical dangers of heterogeneous computing. ACM Transactions on Mathematical Software 23:133–147.Google Scholar
  34. Blackford, L. Susan, Antoine Petitet, Roldan Pozo, Karin Remington, R. Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, Michael Heroux, Linda Kaufman, and Andrew Lumsdaine. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software 28:135–151.MathSciNetCrossRefGoogle Scholar
  35. Bollobás, Béla. 2013. Modern Graph Theory. New York: Springer-Verlag.zbMATHGoogle Scholar
  36. Brown, Peter N., and Homer F. Walker. 1997. GMRES on (nearly) singular systems. SIAM Journal of Matrix Analysis and Applications 18: 37–51.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Bunch, James R., and Linda Kaufman. 1977. Some stable methods for calculating inertia and solving symmetric linear systems. Mathematics of Computation 31:163–179.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Buttari, Alfredo, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Computing 35:38–53.MathSciNetCrossRefGoogle Scholar
  39. Calvetti, Daniela. 1991. Roundoff error for floating point representation of real data. Communications in Statistics 20:2687–2695.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Campbell, S. L., and C. D. Meyer, Jr. 1991. Generalized Inverses of Linear Transformations. New York: Dover Publications, Inc.zbMATHGoogle Scholar
  41. Carmeli, Moshe. 1983. Statistical Theory and Random Matrices. New York: Marcel Dekker, Inc.zbMATHGoogle Scholar
  42. Chaitin-Chatelin, Françoise, and Valérie Frayssé. 1996. Lectures on Finite Precision Computations. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  43. Chambers, John M. 2016. Extending R. Boca Raton: Chapman and Hall/CRC Press.zbMATHGoogle Scholar
  44. Chan, T. F. 1982a. An improved algorithm for computing the singular value decomposition. ACM Transactions on Mathematical Software 8:72–83.Google Scholar
  45. Chan, T. F. 1982b. Algorithm 581: An improved algorithm for computing the singular value decomposition. ACM Transactions on Mathematical Software 8:84–88.Google Scholar
  46. Chan, T. F., G. H. Golub, and R. J. LeVeque. 1982. Updating formulae and a pairwise algorithm for computing sample variances. In Compstat 1982: Proceedings in Computational Statistics, ed. H. Caussinus, P. Ettinger, and R. Tomassone, 30–41. Vienna: Physica-Verlag.Google Scholar
  47. Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician 37:242–247.MathSciNetzbMATHGoogle Scholar
  48. Chapman, Barbara, Gabriele Jost, and Ruud van der Pas. 2007. Using OpenMP: Portable Shared Memory Parallel Programming. Cambridge, Massachusetts: The MIT Press.Google Scholar
  49. Cheng, John, Max Grossman, and Ty McKercher. 2014. Professional CUDA C Programming. New York: Wrox Press, an imprint of John Wiley and Sons.Google Scholar
  50. Chu, Moody T. 1991. Least squares approximation by real normal matrices with specified spectrum. SIAM Journal on Matrix Analysis and Applications 12:115–127.MathSciNetzbMATHCrossRefGoogle Scholar
  51. Čížková, Lenka, and Pavel Čížek. 2012. Numerical linear algebra. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 105–137. Berlin: Springer.CrossRefGoogle Scholar
  52. Clerman, Norman, and Walter Spector. 2012. Modern Fortran. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  53. Cline, Alan K., Andrew R. Conn, and Charles F. Van Loan. 1982. Generalizing the LINPACK condition estimator. In Numerical Analysis, Mexico, 1981, ed. J. P. Hennart, 73–83. Berlin: Springer-Verlag.Google Scholar
  54. Cline, A. K., C. B. Moler, G. W. Stewart, and J. H. Wilkinson. 1979. An estimate for the condition number of a matrix. SIAM Journal of Numerical Analysis 16:368–375.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Cline, A. K., and R. K. Rew. 1983. A set of counter-examples to three condition number estimators. SIAM Journal on Scientific and Statistical Computing 4:602–611.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Cody, W. J. 1988. Algorithm 665: MACHAR: A subroutine to dynamically determine machine parameters. ACM Transactions on Mathematical Software 14:303–329.zbMATHCrossRefGoogle Scholar
  57. Cody, W. J., and Jerome T. Coonen. 1993. Algorithm 722: Functions to support the IEEE standard for binary floating-point arithmetic. ACM Transactions on Mathematical Software 19:443–451.zbMATHCrossRefGoogle Scholar
  58. Coleman, Thomas F., and Charles Van Loan. 1988. Handbook for Matrix Computations. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  59. Cragg, John G., and Stephen G. Donald. 1996. On the asymptotic properties of LDU-based tests of the rank of a matrix. Journal of the American Statistical Association 91:1301–1309.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Cullen, M. R. 1985. Linear Models in Biology. New York: Halsted Press.zbMATHGoogle Scholar
  61. Dauger, Dean E., and Viktor K. Decyk. 2005. Plug-and-play cluster computing: High-performance computing for the mainstream. Computing in Science and Engineering 07(2):27–33.zbMATHCrossRefGoogle Scholar
  62. Davies, Philip I., and Nicholas J. Higham. 2000. Numerically stable generation of correlation matrices and their factors. BIT 40:640–651.MathSciNetzbMATHCrossRefGoogle Scholar
  63. Dempster, Arthur P., and Donald B. Rubin. 1983. Rounding error in regression: The appropriateness of Sheppard’s corrections. Journal of the Royal Statistical Society, Series B 39:1–38.zbMATHGoogle Scholar
  64. Devlin, Susan J., R. Gnanadesikan, and J. R. Kettenring. 1975. Robust estimation and outlier detection with correlation coefficients. Biometrika 62:531–546.zbMATHCrossRefGoogle Scholar
  65. Dey, Aloke, and Rahul Mukerjee. 1999. Fractional Factorial Plans. New York: John Wiley and Sons.zbMATHCrossRefGoogle Scholar
  66. Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart. 1979. LINPACK Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  67. Dongarra, J. J., J. DuCroz, S. Hammarling, and I. Duff. 1990. A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 16:1–17.zbMATHCrossRefGoogle Scholar
  68. Dongarra, J. J., J. DuCroz, S. Hammarling, and R. J. Hanson. 1988. An extended set of Fortran basic linear algebra subprograms. ACM Transactions on Mathematical Software 14:1–17.zbMATHCrossRefGoogle Scholar
  69. Dongarra, Jack J., and Victor Eijkhout. 2000. Numerical linear algebra algorithms and software. Journal of Computational and Applied Mathematics 123:489–514.MathSciNetzbMATHCrossRefGoogle Scholar
  70. Draper, Norman R., and Harry Smith. 1998. Applied Regression Analysis, 3rd ed. New York: John Wiley and Sons.zbMATHGoogle Scholar
  71. Duff, Iain S., Michael A. Heroux, and Roldan Pozo. 2002. An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS technical forum. ACM Transactions on Mathematical Software 28:239–267.MathSciNetzbMATHCrossRefGoogle Scholar
  72. Duff, Iain S., Michele Marrone, Guideppe Radicati, and Carlo Vittoli. 1997. Level 3 basic linear algebra subprograms for sparse matrices: A user-level interface. ACM Transactions on Mathematical Software 23:379–401.MathSciNetzbMATHCrossRefGoogle Scholar
  73. Duff, Iain S., and Christof Vömel. 2002. Algorithm 818: A reference model implementation of the sparse BLAS in Fortran 95. ACM Transactions on Mathematical Software 28:268–283.MathSciNetzbMATHCrossRefGoogle Scholar
  74. Eckart, Carl, and Gale Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1:211–218.zbMATHCrossRefGoogle Scholar
  75. Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  76. Ericksen, Wilhelm S. 1985. Inverse pairs of test matrices. ACM Transactions on Mathematical Software 11:302–304.MathSciNetzbMATHCrossRefGoogle Scholar
  77. Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. Least angle regression. The Annals of Statistics 32:407–499.MathSciNetzbMATHCrossRefGoogle Scholar
  78. Escobar, Luis A., and E. Barry Moser. 1993. A note on the updating of regression estimates. The American Statistician 47:192–194.MathSciNetGoogle Scholar
  79. Eskow, Elizabeth, and Robert B. Schnabel. 1991. Algorithm 695: Software for a new modified Cholesky factorization. ACM Transactions on Mathematical Software 17:306–312.zbMATHCrossRefGoogle Scholar
  80. Eubank, Randall L., and Ana Kupresanin. 2012. Statistical Computing in C++ and R. Boca Raton: Chapman and Hall/CRC Press.zbMATHGoogle Scholar
  81. Fasino, Dario, and Luca Gemignani. 2003. A Lanczos-type algorithm for the QR factorization of Cauchy-like matrices. In Fast Algorithms for Structured Matrices: Theory and Applications, ed. Vadim Olshevsky, 91–104. Providence, Rhode Island: American Mathematical Society.CrossRefGoogle Scholar
  82. Filippone, Salvatore, and Michele Colajanni. 2000. PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Transactions on Mathematical Software 26:527–550.zbMATHCrossRefGoogle Scholar
  83. Fuller, Wayne A. 1995. Introduction to Statistical Time Series, 2nd ed. New York: John Wiley and Sons.CrossRefGoogle Scholar
  84. Galassi, Mark, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Michael Booth, and Fabrice Rossi. 2002. GNU Scientific Library Reference Manual, 2nd ed. Bristol, United Kingdom: Network Theory Limited.Google Scholar
  85. Gandrud, Christopher. 2015. Reproducible Research with R and R Studio, 2nd ed. Boca Raton: Chapman and Hall/CRC Press.zbMATHGoogle Scholar
  86. Gantmacher, F. R. 1959. The Theory of Matrices, Volumes I and II, translated by K. A. Hirsch, Chelsea, New York.zbMATHGoogle Scholar
  87. Geist, Al, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam. 1994. PVM. Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel Computing. Cambridge, Massachusetts: The MIT Press.zbMATHGoogle Scholar
  88. Gentle, James E. 2003. Random Number Generation and Monte Carlo Methods, 2nd ed. New York: Springer-Verlag.zbMATHGoogle Scholar
  89. Gentle, James E. 2009. Computational Statistics. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  90. Gentleman, W. M. 1974. Algorithm AS 75: Basic procedures for large, sparse or weighted linear least squares problems. Applied Statistics 23:448–454.CrossRefGoogle Scholar
  91. Gill, Len, and Arthur Lewbel. 1992. Testing the rank and definiteness of estimated matrices with applications to factor, state-space and ARMA models. Journal of the American Statistical Association 87:766–776.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Golub, G., and W. Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. SIAM Journal of Numerical Analysis, Series B 2:205–224.MathSciNetzbMATHGoogle Scholar
  93. Golub, G. H., and C. Reinsch. 1970. Singular value decomposition and least squares solutions. Numerische Mathematik 14:403–420.MathSciNetzbMATHCrossRefGoogle Scholar
  94. Golub, G. H., and C. F. Van Loan. 1980. An analysis of the total least squares problem. SIAM Journal of Numerical Analysis 17:883–893.MathSciNetzbMATHCrossRefGoogle Scholar
  95. Golub, Gene H., and Charles F. Van Loan. 1996. Matrix Computations, 3rd ed. Baltimore: The Johns Hopkins Press.zbMATHGoogle Scholar
  96. Graybill, Franklin A. 1983. Introduction to Matrices with Applications in Statistics, 2nd ed. Belmont, California: Wadsworth Publishing Company.zbMATHGoogle Scholar
  97. Greenbaum, Anne, and Zdeněk Strakoš. 1992. Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM Journal for Matrix Analysis and Applications 13:121–137.MathSciNetzbMATHCrossRefGoogle Scholar
  98. Gregory, Robert T., and David L. Karney. 1969. A Collection of Matrices for Testing Computational Algorithms. New York: John Wiley and Sons.zbMATHGoogle Scholar
  99. Gregory, R. T., and E. V. Krishnamurthy. 1984. Methods and Applications of Error-Free Computation. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  100. Grewal, Mohinder S., and Angus P. Andrews. 1993. Kalman Filtering Theory and Practice. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  101. Griva, Igor, Stephen G. Nash, and Ariela Sofer. 2009. Linear and Nonlinear Optimization, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  102. Gropp, William D. 2005. Issues in accurate and reliable use of parallel computing in numerical programs. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 253–263. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  103. Gropp, William, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable Parallel Programming with the Message-Passing Interface, 3rd ed. Cambridge, Massachusetts: The MIT Press.zbMATHGoogle Scholar
  104. Gropp, William, Ewing Lusk, and Thomas Sterling (Editors). 2003. Beowulf Cluster Computing with Linux, 2nd ed. Cambridge, Massachusetts: The MIT Press.Google Scholar
  105. Haag, J. B., and D. S. Watkins. 1993. QR-like algorithms for the nonsymmetric eigenvalue problem. ACM Transactions on Mathematical Software 19:407–418.zbMATHCrossRefGoogle Scholar
  106. Hager, W. W. 1984. Condition estimates. SIAM Journal on Scientific and Statistical Computing 5:311–316.MathSciNetzbMATHCrossRefGoogle Scholar
  107. Hanson, Richard J., and Tim Hopkins. 2013. Numerical Computing with Modern Fortran. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHGoogle Scholar
  108. Harville, David A. 1997. Matrix Algebra from a Statistician’s Point of View. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  109. Heath, M. T., E. Ng, and B. W. Peyton. 1991. Parallel algorithms for sparse linear systems. SIAM Review 33:420–460.MathSciNetzbMATHCrossRefGoogle Scholar
  110. Hedayat, A. S., N. J. A. Sloane, and John Stufken. 1999. Orthogonal Arrays: Theory and Applications. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  111. Heiberger, Richard M. 1978. Algorithm AS127: Generation of random orthogonal matrices. Applied Statistics 27:199–205.zbMATHCrossRefGoogle Scholar
  112. Heroux, Michael A. 2015. Editorial: ACM TOMS replicated computational results initiative. ACM Transactions on Mathematical Software 41:Article No. 13.Google Scholar
  113. Higham, Nicholas J. 1987. A survey of condition number estimation for triangular matrices. SIAM Review 29:575–596.MathSciNetzbMATHCrossRefGoogle Scholar
  114. Higham, Nicholas J. 1988. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Transactions on Mathematical Software 14:381–386.MathSciNetzbMATHCrossRefGoogle Scholar
  115. Higham, Nicholas J. 1990. Experience with a matrix norm estimator. SIAM Journal on Scientific and Statistical Computing 11:804–809.MathSciNetzbMATHCrossRefGoogle Scholar
  116. Higham, Nicholas J. 1991. Algorithm 694: A collection of test matrices in Matlab. ACM Transactions on Mathematical Software 17:289–305.zbMATHCrossRefGoogle Scholar
  117. Higham, Nicholas J. 1997. Stability of the diagonal pivoting method with partial pivoting. SIAM Journal of Matrix Analysis and Applications 18:52–65.MathSciNetzbMATHCrossRefGoogle Scholar
  118. Higham, Nicholas J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  119. Higham, Nicholas J. 2008. Functions of Matrices. Theory and Computation. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  120. Hill, Francis S., Jr., and Stephen M Kelley. 2006. Computer Graphics Using OpenGL, 3rd ed. New York: Pearson Education.Google Scholar
  121. Hoffman, A. J., and H. W. Wielandt. 1953. The variation of the spectrum of a normal matrix. Duke Mathematical Journal 20:37–39.MathSciNetzbMATHCrossRefGoogle Scholar
  122. Hong, H. P., and C. T. Pan. 1992. Rank-revealing QR factorization and SVD. Mathematics of Computation 58:213–232.MathSciNetzbMATHGoogle Scholar
  123. Horn, Roger A., and Charles R. Johnson. 1991. Topics in Matrix Analysis. Cambridge, United Kingdom: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  124. IEEE. 2008. IEEE Standard for Floating-Point Arithmetic, Std 754-2008. New York: IEEE, Inc.Google Scholar
  125. Jansen, Paul, and Peter Weidner. 1986. High-accuracy arithmetic software — some tests of the ACRITH problem-solving routines. ACM Transactions on Mathematical Software 12:62–70.MathSciNetzbMATHCrossRefGoogle Scholar
  126. Jaulin, Luc, Michel Kieffer, Olivier Didrit, and Eric Walter. (2001). Applied Interval Analysis. New York: Springer.zbMATHCrossRefGoogle Scholar
  127. Jolliffe, I. T. 2002. Principal Component Analysis, 2nd ed. New York: Springer-Verlag.zbMATHGoogle Scholar
  128. Karau, Holden, Andy Konwinski, Patrick Wendell, and Matei Zaharia. 2015. Learning Spark. Sabastopol, California: O’Reilly Media, Inc.Google Scholar
  129. Kearfott, R. Baker. 1996. Interval_arithmetic: A Fortran 90 module for an interval data type. ACM Transactions on Mathematical Software 22:385–392.zbMATHCrossRefGoogle Scholar
  130. Kearfott, R. Baker, and Vladik Kreinovich (Editors). 1996. Applications of Interval Computations. Netherlands: Kluwer, Dordrecht.zbMATHGoogle Scholar
  131. Kearfott, R. B., M. Dawande, K. Du, and C. Hu. 1994. Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Transactions on Mathematical Software 20:447–459.zbMATHCrossRefGoogle Scholar
  132. Keller-McNulty, Sallie, and W. J. Kennedy. 1986. An error-free generalized matrix inversion and linear least squares method based on bordering. Communications in Statistics — Simulation and Computation 15:769–785.MathSciNetzbMATHCrossRefGoogle Scholar
  133. Kennedy, William J., and James E. Gentle. 1980. Statistical Computing. New York: Marcel Dekker, Inc.zbMATHGoogle Scholar
  134. Kenney, C. S., and A. J. Laub. 1994. Small-sample statistical condition estimates for general matrix functions. SIAM Journal on Scientific Computing 15:191–209.MathSciNetzbMATHCrossRefGoogle Scholar
  135. Kenney, C. S., A. J. Laub, and M. S. Reese. 1998. Statistical condition estimation for linear systems. SIAM Journal on Scientific Computing 19:566–583.MathSciNetzbMATHCrossRefGoogle Scholar
  136. Kim, Hyunsoo, and Haesun Park. 2008. Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method. SIAM Journal on Matrix Analysis and Applications 30:713–730.MathSciNetzbMATHCrossRefGoogle Scholar
  137. Kleibergen, Frank, and Richard Paap. 2006. Generalized reduced rank tests using the singular value decomposition. Journal of Econometrics 133:97–126.MathSciNetzbMATHCrossRefGoogle Scholar
  138. Kollo, Tõnu, and Dietrich von Rosen. 2005. Advanced Multivariate Statistics with Matrices. Amsterdam: Springer.zbMATHCrossRefGoogle Scholar
  139. Kshemkalyani, Ajay D., and Mukesh Singhal. 2011. Distributed Computing: Principles, Algorithms, and Systems. Cambridge, United Kingdom: Cambridge University Press.zbMATHGoogle Scholar
  140. Kulisch, Ulrich. 2011. Very fast and exact accumulation of products. Computing 91:397–405.MathSciNetzbMATHCrossRefGoogle Scholar
  141. Lawson, C. L., R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software 5:308–323.zbMATHCrossRefGoogle Scholar
  142. Lee, Daniel D., and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, 556–562. Cambridge, Massachusetts: The MIT Press.Google Scholar
  143. Lemmon, David R., and Joseph L. Schafer. 2005. Developing Statistical Software in Fortran 95. New York: Springer-Verlag.zbMATHGoogle Scholar
  144. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of Massive Datasets, 2nd ed. Cambridge, United Kingdom: Cambridge University Press.CrossRefGoogle Scholar
  145. Levesque, John, and Gene Wagenbreth. 2010. High Performance Computing: Programming and Applications. Boca Raton: Chapman and Hall/CRC Press.CrossRefGoogle Scholar
  146. Liem, C. B., T. Lü, and T. M. Shih. 1995. The Splitting Extrapolation Method. Singapore: World Scientific.zbMATHCrossRefGoogle Scholar
  147. Linnainmaa, Seppo. 1975. Towards accurate statistical estimation of rounding errors in floating-point computations. BIT 15:165–173.MathSciNetzbMATHCrossRefGoogle Scholar
  148. Liu, Shuangzhe and Heinz Neudecker. 1996. Several matrix Kantorovich-type inequalities. Journal of Mathematical Analysis and Applications 197:23–26.MathSciNetzbMATHCrossRefGoogle Scholar
  149. Loader, Catherine. 2012. Smoothing: Local regression techniques. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 571–596. Berlin: Springer.CrossRefGoogle Scholar
  150. Longley, James W. 1967. An appraisal of least squares problems for the electronic computer from the point of view of the user. Journal of the American Statistical Association 62:819–841.MathSciNetCrossRefGoogle Scholar
  151. Luk, F. T., and H. Park. 1989. On parallel Jacobi orderings. SIAM Journal on Scientific and Statistical Computing 10:18–26.MathSciNetzbMATHCrossRefGoogle Scholar
  152. Magnus, Jan R., and Heinz Neudecker. 1999. Matrix Differential Calculus with Applications in Statistics and Econometrics, revised ed. New York: John Wiley and Sons.zbMATHGoogle Scholar
  153. Markus, Arjen. 2012. Modern Fortran in Practice. Cambridge, United Kingdom: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  154. Marshall, A. W., and I. Olkin. 1990. Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Mathematicae 40:89–93.MathSciNetzbMATHCrossRefGoogle Scholar
  155. Metcalf, Michael, John Reid, and Malcolm Cohen. 2011. Modern Fortran Explained. Oxford, United Kingdom: Oxford University Press.zbMATHGoogle Scholar
  156. Meyn, Sean, and Richard L. Tweedie. 2009. Markov Chains and Stochastic Stability, 2nd ed. Cambridge, United Kingdom: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  157. Miller, Alan J. 1992. Algorithm AS 274: Least squares routines to supplement those of Gentleman. Applied Statistics 41:458–478 (Corrections, 1994, ibid. 43:678).Google Scholar
  158. Miller, Alan. 2002. Subset Selection in Regression, 2nd ed. Boca Raton: Chapman and Hall/CRC Press.zbMATHCrossRefGoogle Scholar
  159. Miller, Alan J., and Nam-Ky Nguyen. 1994. A Fedorov exchange algorithm for D-optimal design. Applied Statistics 43:669–678.CrossRefGoogle Scholar
  160. Mizuta, Masahiro. 2012. Dimension reduction methods. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 619–644. Berlin: Springer.CrossRefGoogle Scholar
  161. Moore, E. H. 1920. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society 26:394–395.Google Scholar
  162. Moore, Ramon E. (1979). Methods and Applications of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  163. Mosteller, Frederick, and David L. Wallace. 1963. Inference in an authorship problem. Journal of the American Statistical Association 58:275–309.zbMATHGoogle Scholar
  164. Muirhead, Robb J. 1982. Aspects of Multivariate Statistical Theory. New York: John Wiley and Sons.zbMATHCrossRefGoogle Scholar
  165. Mullet, Gary M., and Tracy W. Murray. 1971. A new method for examining rounding error in least-squares regression computer programs. Journal of the American Statistical Association 66:496–498.zbMATHCrossRefGoogle Scholar
  166. Nachbin, Leopoldo. 1965. The Haar Integral, translated by Lulu Bechtolsheim. Princeton, New Jersey: D. Van Nostrand Co Inc.zbMATHGoogle Scholar
  167. Nakano, Junji. 2012. Parallel computing techniques. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 243–272. Berlin: Springer.CrossRefGoogle Scholar
  168. Nguyen, Nam-Ky, and Alan J. Miller. 1992. A review of some exchange algorithms for constructing D-optimal designs. Computational Statistics and Data Analysis 14:489–498.MathSciNetzbMATHCrossRefGoogle Scholar
  169. Olshevsky, Vadim (Editor). 2003. Fast Algorithms for Structured Matrices: Theory and Applications. Providence, Rhode Island: American Mathematical Society.zbMATHGoogle Scholar
  170. Olver, Frank W. J., Daniel w. Lozier, Ronald F. Boisvert, and Charles W. Clark. 2010. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press.Google Scholar
  171. Overton, Michael L. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  172. Parsian, Mahmoud. 2015. Data Algorithms. Sabastopol, California: O’Reilly Media, Inc.Google Scholar
  173. Penrose, R. 1955. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society 51:406–413.zbMATHCrossRefGoogle Scholar
  174. Quinn, Michael J. 2003. Parallel Programming in C with MPI and OpenMP. New York: McGraw-Hill.Google Scholar
  175. Rice, John R. 1966. Experiments on Gram-Schmidt orthogonalization. Mathematics of Computation 20:325–328.MathSciNetzbMATHCrossRefGoogle Scholar
  176. Rice, John R. 1993. Numerical Methods, Software, and Analysis, 2nd ed. New York: McGraw-Hill Book Company.zbMATHGoogle Scholar
  177. Robin, J. M., and R. J. Smith. 2000. Tests of rank. Econometric Theory 16:151–175.MathSciNetzbMATHCrossRefGoogle Scholar
  178. Roosta, Seyed H. 2000. Parallel Processing and Parallel Algorithms: Theory and Computation. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  179. Rousseeuw, Peter J., and Geert Molenberghs. 1993. Transformation of nonpositive semidefinite correlation matrices. Communications in Statistics — Theory and Methods 22:965–984.zbMATHCrossRefGoogle Scholar
  180. Rust, Bert W. 1994. Perturbation bounds for linear regression problems. Computing Science and Statistics 26:528–532.Google Scholar
  181. Saad, Y., and M. H. Schultz. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7:856–869.MathSciNetzbMATHCrossRefGoogle Scholar
  182. Schott, James R. 2004. Matrix Analysis for Statistics, 2nd ed. New York: John Wiley and Sons.Google Scholar
  183. Searle, S. R. 1971. Linear Models. New York: John Wiley and Sons.zbMATHGoogle Scholar
  184. Searle, Shayle R. 1982. Matrix Algebra Useful for Statistics. New York: John Wiley and Sons.zbMATHGoogle Scholar
  185. Shao, Jun. 2003. Mathematical Statistics, 2nd ed. New York: Springer-Verlag.Google Scholar
  186. Sherman, J., and W. J. Morrison. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics 21:124–127.MathSciNetzbMATHCrossRefGoogle Scholar
  187. Siek, Jeremy, and Andrew Lumsdaine. 2000. A modern framework for portable high-performance numerical linear algebra. In Advances in Software Tools for Scientific Computing, ed. Are Bruaset, H. Langtangen, and E. Quak, 1–56. New York: Springer-Verlag.Google Scholar
  188. Skeel, R. D. 1980. Iterative refinement implies numerical stability for Gaussian elimination. Mathematics of Computation 35:817–832.MathSciNetzbMATHCrossRefGoogle Scholar
  189. Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. 1976. Matrix Eigensystem Routines — EISPACK Guide. Berlin: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  190. Stallings, W. T., and T. L. Boullion. 1972. Computation of pseudo-inverse using residue arithmetic. SIAM Review 14:152–163.MathSciNetzbMATHCrossRefGoogle Scholar
  191. Stewart, G. W. 1980. The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal of Numerical Analysis 17:403–409.MathSciNetzbMATHCrossRefGoogle Scholar
  192. Stewart, G. W. 1990. Stochastic perturbation theory. SIAM Review 32:579–610.MathSciNetzbMATHCrossRefGoogle Scholar
  193. Stodden, Victoria, Friedrich Leisch, and Roger D. Peng. 2014. Implementing Reproducible Research. Boca Raton: Chapman and Hall/CRC Press.Google Scholar
  194. Strang, Gilbert, and Tri Nguyen. 2004. The interplay of ranks of submatrices. SIAM Review 46:637–646.MathSciNetzbMATHCrossRefGoogle Scholar
  195. Strassen, V. 1969, Gaussian elimination is not optimal. Numerische Mathematik 13:354–356.MathSciNetzbMATHCrossRefGoogle Scholar
  196. Szabó, S., and R. Tanaka. 1967. Residue Arithmetic and Its Application to Computer Technology. New York: McGraw-Hill.zbMATHGoogle Scholar
  197. Tanner, M. A., and R. A. Thisted. 1982. A remark on AS127. Generation of random orthogonal matrices. Applied Statistics 31:190–192.CrossRefGoogle Scholar
  198. Titterington, D. M. 1975. Optimal design: Some geometrical aspects of D-optimality. Biometrika 62:313–320.MathSciNetzbMATHCrossRefGoogle Scholar
  199. Trefethen, Lloyd N., and Mark Embree. 2005. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton: Princeton University Press.zbMATHGoogle Scholar
  200. Trefethen, Lloyd N., and David Bau III. 1997. Numerical Linear Algebra. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  201. Trosset, Michael W. 2002. Extensions of classical multidimensional scaling via variable reduction. Computational Statistics 17:147–163.MathSciNetzbMATHCrossRefGoogle Scholar
  202. Unicode Consortium. 1990. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 1. Reading, Massachusetts: Addison-Wesley Publishing Company.Google Scholar
  203. Unicode Consortium. 1992. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 2. Reading, Massachusetts: Addison-Wesley Publishing Company.Google Scholar
  204. Vandenberghe, Lieven, and Stephen Boyd. 1996. Semidefinite programming. SIAM Review 38:49–95.MathSciNetzbMATHCrossRefGoogle Scholar
  205. Venables, W. N., and B. D. Ripley. 2003. Modern Applied Statistics with S, 4th ed. New York: Springer-Verlag.zbMATHGoogle Scholar
  206. Walker, Homer F. 1988. Implementation of the GMRES method using Householder transformations. SIAM Journal on Scientific and Statistical Computing 9:152–163.MathSciNetzbMATHCrossRefGoogle Scholar
  207. Walker, Homer F., and Lu Zhou. 1994. A simpler GMRES. Numerical Linear Algebra with Applications 1:571–581.MathSciNetzbMATHCrossRefGoogle Scholar
  208. Walster, G. William. 1996. Stimulating hardware and software support for interval arithmetic. In Applications of Interval Computations, ed. R. Baker Kearfott and Vladik Kreinovich, 405–416. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  209. Walster, G. William. 2005. The use and implementation of interval data types. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 173–194. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  210. Watkins, David S. 2002. Fundamentals of Matrix Computations, 2nd ed. New York: John Wiley and Sons.zbMATHCrossRefGoogle Scholar
  211. White, Tom. 2015. Hadoop: The Definitive Guide, 4th ed. Sabastopol, California: O’Reilly Media, Inc.Google Scholar
  212. Wickham, Hadley. 2015) Advanced R. Boca Raton: Chapman and Hall/CRC Press.Google Scholar
  213. Wilkinson, J. H. 1959. The evaluation of the zeros of ill-conditioned polynomials. Numerische Mathematik 1:150–180.MathSciNetzbMATHCrossRefGoogle Scholar
  214. Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, New Jersey: Prentice-Hall. (Reprinted by Dover Publications, Inc., New York, 1994).Google Scholar
  215. Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. New York: Oxford University Press.zbMATHGoogle Scholar
  216. Woodbury, M. A. 1950. “Inverting Modified Matrices”, Memorandum Report 42, Statistical Research Group, Princeton University.Google Scholar
  217. Wynn, P. 1962. Acceleration techniques for iterated vector and matrix problems. Mathematics of Computation 16:301–322.MathSciNetzbMATHCrossRefGoogle Scholar
  218. Xie, Yihui. 2015. Dynamic Documents with R and knitr, 2nd ed. Boca Raton: Chapman and Hall/CRC Press.Google Scholar
  219. Zhou, Bing Bing, and Richard P. Brent. 2003. An efficient method for computing eigenvalues of a real normal matrix. Journal of Parallel and Distributed Computing 63:638–648.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • James E. Gentle
    • 1
  1. 1.FairfaxUSA

Personalised recommendations