Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm

  • Alaa TharwatEmail author
  • Thomas Gabel
  • Aboul Ella Hassanien
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 639)


Support Vector Machine (SVM) parameters such as penalty and kernel parameters have a great influence on the complexity and accuracy of the classification model. In this paper, Dragonfly algorithm (DA) has been proposed to optimize the parameters of SVM; thus, the classification error can be decreased. To evaluate the proposed model (DA-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the DA-SVM algorithm are compared with two well-known optimization algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The experimental results demonstrated that the proposed model is capable to find the optimal values of the SVM parameters and avoids the local optima problem.


Support Vector Machine (SVM) Parameter optimization Dragonfly Algorithm (DA) 


  1. 1.
    Tharwat, A., Gaber, T., Hassanien, A.E.: Cattle identification based on muzzle images using gabor features and SVM classifier. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 236–247. Springer (2014)Google Scholar
  2. 2.
    Tharwat, A., Moemen, Y.S., Hassanien, A.E.: Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J. Biomed. Inform. 68, 132–149 (2017)CrossRefGoogle Scholar
  3. 3.
    Tharwat, A., Moemen, Y.S., Hassanien, A.E.: A predictive model for toxicity effects assessment of biotransformed hepatic drugs using iterative sampling method. Sci. Rep. 6 (2016)Google Scholar
  4. 4.
    Semary, N.A., Tharwat, A., Elhariri, E., Hassanien, A.E.: Fruit-based tomato grading system using features fusion and support vector machine. In: Intelligent Systems’ 2014, pp. 401–410. Springer (2015)Google Scholar
  5. 5.
    Tharwat, A., Gaber, T., Hassanien, A.E.: Two biometric approaches for cattle identification based on features and classifiers fusion. Int. J. Image Min. 1(4), 342–365 (2015)CrossRefGoogle Scholar
  6. 6.
    Tharwat, A., Hassanien, A.E., Elnaghi, B.E.: A BA-based algorithm for parameter optimization of support vector machine. Patt. Recogn. Lett. (2016)Google Scholar
  7. 7.
    Wu, C.H., Tzeng, G.H., Lin, R.H.: A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 36(3), 4725–4735 (2009)CrossRefGoogle Scholar
  8. 8.
    Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)CrossRefGoogle Scholar
  10. 10.
    Zhang, X., Chen, X., He, Z.: An ACO-based algorithm for parameter optimization of support vector machines. Expert Syst. Appl. 37(9), 6618–6628 (2010)CrossRefGoogle Scholar
  11. 11.
    Reddy, A.S., Reddy, P.M.D.: Optimization of distribution network reconfiguration using dragonfly algorithm. J. Electr. Eng. (2016). In pressGoogle Scholar
  12. 12.
    Sree Ranjini, K.S., Murugan, S.: Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst. Appl. 83, 63–78 (2017)CrossRefGoogle Scholar
  13. 13.
    Bashishtha, T.K., Srivastava, L.: Nature inspired meta-heuristic dragonfly algorithms for solving optimal power flow problem. Nature (2016)Google Scholar
  14. 14.
    Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Scholköpf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  16. 16.
    Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)CrossRefGoogle Scholar
  17. 17.
    Tharwat, A., Gaber, T., Hassanien, A.E., Elnaghi, B.E.: Particle swarm optimization: a tutorial. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 614–635. IGI Global (2017)Google Scholar
  18. 18.
    Tharwat, A.: Principal component analysis - a tutorial. Int. J. Appl. Patt. Recogn. 3(3), 197–240 (2016)CrossRefGoogle Scholar
  19. 19.
    Tharwat, A.: Linear vs. quadratic discriminant analysis classifier: a tutorial. Int. J. Appl. Patt. Recogn. 3(2), 145–180 (2016)CrossRefGoogle Scholar
  20. 20.
    Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: a detailed tutorial. AI Commun. 1–22 (2017). (Preprint)Google Scholar
  21. 21.
    Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alaa Tharwat
    • 1
    • 3
    Email author
  • Thomas Gabel
    • 1
  • Aboul Ella Hassanien
    • 2
    • 3
  1. 1.Faculty of Computer Science and EngineeringFrankfurt University of Applied SciencesFrankfurt am MainGermany
  2. 2.Faculty of Computers and InformationCairo UniversityGizaEgypt
  3. 3.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations