Skip to main content

Coronary Artery Vessel Tree Enhancement in Three-Dimensional Computed Tomography Angiography

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017 (AISI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 639))

  • 2854 Accesses

Abstract

Coronary artery segmentation in 3D images is a fundamental step in evaluating the degree of Coronary Artery Disease (CAD) in cardiac clinical diagnosis and surgical planning. In this paper, we study the effect of vessel filtering and enhancement on coronary artery segmentation from Computed Tomography Angiography (CTA) datasets. The method mainly consists of two steps: (1) CTA datasets enhancement using Hessian-based analysis; and (2) coronary vessels segmentation in enhanced images using Otsu thresholding. The experiments are carried on 18 different CTA datasets and segmentation results of enhanced and non-enhanced datasets are quantitatively measured and compared using three different evaluation metrics. Experimental results show that segmenting coronary vessels in enhanced CTA images gives more accurate extraction of coronary arteries than non-enhanced images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. The top 10 causes of death (2014)

    Google Scholar 

  2. Tavakol, M., Ashraf, S., Brener, S.J.: Risks and complications of coronary angiography: a comprehensive review. Global J. Health Sci. 4(1), 65 (2012)

    Google Scholar 

  3. Meinel, F.G., Bayer II, R.R., Zwerner, P.L., De Cecco, C.N., Schoepf, U.J., Bamberg, F.: Coronary computed tomographic angiography in clinical practice: state of the art. Radiol. Clin. North Am. 53(2), 287–296 (2015)

    Article  Google Scholar 

  4. Pugliese, F., Hunink, M.M., Gruszczynska, K., Alberghina, F., Malag, R., van Pelt, N., Mollet, N.R., Cademartiri, F., Weustink, A.C., Meijboom, W.B., Witteman, C.L.: Learning curve for coronary CT angiography: what constitutes sufficient training? Radiology 251(2), 359–368 (2009)

    Article  Google Scholar 

  5. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  6. Hennemuth, A., Boskamp, T., Fritz, D., Khnel, C., Bock, S., Rinck, D., Scheuering, M., Peitgen, H.O.: One-click coronary tree segmentation in CT angiographic images. In: International Congress Series, vol. 1281, pp. 317–321. Elsevier (2005)

    Google Scholar 

  7. Boskamp, T., Rinck, D., Link, F., Kummerlen, B., Stamm, G., Mildenberger, P.: New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24(1), 287–297 (2004)

    Article  Google Scholar 

  8. Metz, C., Schaap, M., Van Der Giessen, A., Van Walsum, T., Niessen, W.: Semi-automatic coronary artery centerline extraction in computed tomography angiography data. In: IEEE 4th International Symposium on Biomedical Imaging: From Nano to Macro, pp. 856–859. IEEE (2007)

    Google Scholar 

  9. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: a scale space representation of vessel structures. Med. Image Anal. 10(6), 815–825 (2006)

    Article  Google Scholar 

  10. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130-137. Springer, Heidelberg (1998)

    Google Scholar 

  11. Bock, S., Khnel, C., Boskamp, T., Peitgen, H.O.: Robust vessel segmentation. In: Medical Imaging, pp. 691539–691539. International Society for Optics and Photonics (2008)

    Google Scholar 

  12. Öksüz, İ., Ünay, D., Kadıpaşaoğlu, K.: A hybrid method for coronary artery stenoses detection and quantification in CTA images. In: MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation (2012)

    Google Scholar 

  13. Chen, Y., Cao, Q., Zhuang, Z., Yang, Z., Luo, L., Toumoulin, C.: 3-D coronary vessel extraction using a novel minimum path based region growing. In: International Conference Image Analysis and Recognition, pp. 502–509. Springer, Heidelberg (2013)

    Google Scholar 

  14. Zhou, C., Chan, H.P., Chughtai, A., Kuriakose, J., Agarwal, P., Kazerooni, E.A., Wei, J.: Computerized analysis of coronary artery disease: performance evaluation of segmentation and tracking of coronary arteries in CT angiograms. Med. Phys. 41(8), 081912 (2014)

    Article  Google Scholar 

  15. Zhou, C., Chan, H.P., Chughtai, A., Patel, S., Hadjiiski, L.M., Wei, J., Kazerooni, E.A.: Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput. Med. Imaging Graph. 36(1), 110 (2012)

    Article  Google Scholar 

  16. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: CVRMed-MRCAS 1997, pp. 213–222. Springer, Heidelberg (1997)

    Google Scholar 

  17. Koller, T.M., Gerig, G., Szekely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2-D and 3-D image data. In: Proceedings of IEEE Fifth International Conference on Computer Vision, pp. 864–869. IEEE (1995)

    Google Scholar 

  18. Sato, Y., Chen, J., Yamamoto, S., Tamura, S., Harada, N., Shiga, T., Harino, S., Oshima, Y.: Measuring microcirculation using spatiotemporal image analysis. In: Computer Vision. Virtual Reality and Robotics in Medicine, pp. 302–308. Springer, Heidelberg (1995)

    Google Scholar 

  19. Sato, Y., Chen, J., Zoroofi, R.A., Harada, N., Tamura, S., Shiga, T.: Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis. IEEE Trans. Biomed. Eng. 44(4), 225–236 (1997)

    Article  Google Scholar 

  20. Coronary Artery Stenoses Detection and Quantification Evaluation Framework. http://coronary.bigr.nl/stenoses/about.php

  21. Kirişli, H.A., Schaap, M., Metz, C.T., Dharampal, A.S., Meijboom, W.B., Papadopoulou, S.L., Cramer, M.J.: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med. Image Anal. 17(8), 859876 (2013)

    Google Scholar 

  22. Yang, G., Kitslaar, P., Frenay, M., Broersen, A., Boogers, M.J., Bax, J.J., Reiber, J.H., Dijkstra, J.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Shams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Shams, M., Hamad, S., Salem, M.A.M., Shedeed, H.A. (2018). Coronary Artery Vessel Tree Enhancement in Three-Dimensional Computed Tomography Angiography. In: Hassanien, A., Shaalan, K., Gaber, T., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017. AISI 2017. Advances in Intelligent Systems and Computing, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-64861-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64861-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64860-6

  • Online ISBN: 978-3-319-64861-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics