Classification of Toxicity Effects of Biotransformed Hepatic Drugs Using Optimized Support Vector Machine

  • Alaa TharwatEmail author
  • Thomas Gabel
  • Aboul Ella Hassanien
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 639)


Measuring toxicity is an important step in drug development, and there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drug samples that biotransformed in liver. The toxic effects were calculated for the current data are mutagenic, tumorigenic, irritant, and reproductive effects. The proposed model has two phases, in the first phase; sampling algorithms were utilized to solve the problem of imbalanced dataset, in the second phase, the Support Vector Machines (SVM) classifier was used to classify an unknown drug sample into toxic or non-toxic. Moreover, in our model, Dragonfly Algorithm (DA) was used to optimize SVM parameters such as the penalty parameter and kernel parameters. The experimental results demonstrated that the proposed model obtained high sensitivity to all toxic effects, which indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.


Drug design Toxicity Classification Computational model Dragonfly algorithm Optimization 


  1. 1.
    Huang, R., Southall, N., Xia, M., Cho, M.H., Jadhav, A., Nguyen, D.T., Inglese, J., Tice, R.R., Austin, C.P.: Weighted feature significance (wfs): a simple, interpretable model of compound toxicity based on the statistical enrichment of structural features. Toxicol. Sci., kfp231 (2009)Google Scholar
  2. 2.
    Tharwat, A., Gaber, T., Fouad, M.M., Snasel, V., Hassanien, A.E.: Towards an automated zebrafish-based toxicity test model using machine learning. In: Proceedings of International Conference on Communications, Management, and Information Technology (ICCMIT 2015), Procedia Computer Science, vol. 65, pp. 643–651 (2015)Google Scholar
  3. 3.
    Woo, Y.T., Lai, D.Y., Argus, M.F., Arcos, J.C.: Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol. Lett. 79(1), 219–228 (1995)CrossRefGoogle Scholar
  4. 4.
    Tharwat, A., Moemen, Y.S., Hassanien, A.E.: A predictive model for toxicity effects assessment of biotransformed hepatic drugs using iterative sampling method. Sci. Rep. 6 (2016)Google Scholar
  5. 5.
    KS, S.R., Murugan, S.: Memory based hybrid dragonfly algorithm for numerical optimization problems. Exp. Syst. Appl. (2017)Google Scholar
  6. 6.
    Tharwat, A., Gaber, T., Hassanien, A.E., Elnaghi, B.E.: Particle swarm optimization: A tutorial. In: Handbook of Research on Machine Learning Innovations and Trends. IGI Global, pp. 614–635 (2017)Google Scholar
  7. 7.
    Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)CrossRefGoogle Scholar
  8. 8.
    Scholköpf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press (2001)Google Scholar
  9. 9.
    Tharwat, A., Moemen, Y.S., Hassanien, A.E.: Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J. Biomed. Inform. 68, 132–149 (2017)CrossRefGoogle Scholar
  10. 10.
    Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)CrossRefGoogle Scholar
  11. 11.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRefGoogle Scholar
  12. 12.
    Tharwat, A., Hassanien, A.E., Elnaghi, B.E.: A ba-based algorithm for parameter optimization of support vector machine. Pattern Recognit. Lett. (2016)Google Scholar
  13. 13.
    Sander, T., Freyss, J., von Korff, M., Rufener, C.: Datawarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55(2), 460–473 (2015)CrossRefGoogle Scholar
  14. 14.
    Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(suppl 1), D668–D672 (2006)CrossRefGoogle Scholar
  15. 15.
    Tharwat, A., Ghanem, A.M., Hassanien, A.E.: Three different classifiers for facial age estimation based on k-nearest neighbor. In: Proceedings of the 9th International Computer Engineering Conference (ICENCO), PP. 55–60. IEEE (2013)Google Scholar
  16. 16.
    Jordan, A.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 14, 841 (2002)Google Scholar
  17. 17.
    Tharwat, A.: Linear vs. quadratic discriminant analysis classifier: a tutorial. Int. J. Appl. Pattern Recogn. 3(2), 145–180 (2016)CrossRefGoogle Scholar
  18. 18.
    Tharwat, A.: Principal component analysis-a tutorial. Int. J. Appl. Pattern Recognit. 3(3), 197–240 (2016)CrossRefGoogle Scholar
  19. 19.
    Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: a detailed tutorial. AI Commun., 1–22 (Preprint)Google Scholar
  20. 20.
    Huang, C.L., Wang, C.J.: A ga-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alaa Tharwat
    • 1
    • 3
    Email author
  • Thomas Gabel
    • 1
  • Aboul Ella Hassanien
    • 2
    • 3
  1. 1.Faculty of Computer Science and EngineeringFrankfurt University of Applied SciencesFrankfurt Am MainGermany
  2. 2.Faculty of Computers and InformationCairo UniversityGizaEgypt
  3. 3.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations