Advertisement

Breeding for Tolerance to Low Soil Nitrogen

Chapter

Abstract

Nitrogen (N) is the most important of the three primary nutrients required for good growth and productivity of the maize plant. Generally, farmers in sub-Saharan Africa (SSA) apply little or no inorganic fertilizer to their maize crop due to nonavailability and/or financial constraints. Inherent soil nutrient is low due to soil structure and texture, heavy, rapid leaching, continuous cultivation of the land, grazing, and/or removal of crop residue to feed livestock. One way out is to develop low-N tolerant varieties for farmers in the region. Therefore, selection under low N has become an important strategy of the IITA maize improvement program for developing low-N tolerant cultivars. For the early and extra-early germplasm, screening for tolerance to low N involves the exposure of the genetic materials to two levels of N fertilizer, 30 and 90 kg N ha−1. Two sites known from soil tests to have been depleted of inherent soil N are used for low-N screening: Ile-Ife in the forest agroecology and Mokwa in Sudan and Guinea savanna (SGS). In addition, Mokwa and Abuja which are the Striga screening sites also serve as indirect screening sites for low N because only 30 kg N ha−1 is applied to the Striga-infested plots, while the non-infested plots that receive optimal recommended N rate (90 kg N ha−1) serve as the control. Several studies have been conducted to determine the most appropriate traits to use as selection criteria for low-N tolerance, its genetics and response to direct and indirect selection, the genotype by N interaction, association of low-N tolerance with tolerance/resistance to other stresses, and performance of low-N varieties in farmers’ fields.

References

  1. Andrade, F.H., A. Cirilo, and L. Echarte. 2000. Kernel number determination in maize. In Physiological basis for maize improvement, ed. M.E. Otegui and G. Slafer, 59–70. New York: Food Products Press.Google Scholar
  2. Adofo-Boateng, P. 2015. Development of high-yielding and stable maize (Zea mays L.) hybrids tolerant to low soil nitrogen (Doctoral dissertation). Retrieved from University of Ghana http://ugspace.ug.edu.gh.
  3. Badu-Apraku, B., A. Menkir, S.O. Ajala, R.O. Akinwale, M. Oyekunle, and K. Obeng-Antwi. 2010. Performance of tropical early-maturing maize cultivars in multiple stress environments. Canadian Journal of Plant Science 90: 1–22.CrossRefGoogle Scholar
  4. Badu-Apraku, B., A.F. Lum, M.A.B. Fakorede, A. Menkir, Y. Chabi, C. The, M. Abdulai, S. Jacob, and S. Agbaje. 2008. Performance of early maize cultivars derived from recurrent selection for grain yield and Striga resistance. Crop Science 48: 99–112.CrossRefGoogle Scholar
  5. Badu-Apraku, B., C.G. Yallou, A. Haruna, A.O. Talabi, I.C. Akaogu, B. Annor, and A. Adeoti. 2016. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Science. doi: 10.2135/cropsci2016.02.0089.
  6. Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, I. Vroh, R.O. Akinwale, and M. Aderounmu. 2013. Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica 192: 413–433.CrossRefGoogle Scholar
  7. Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, and R.O. Akinwale. 2011. Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid production. Maydica 56–1721. Open Access.Google Scholar
  8. Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, G.C. Yallou, K. Obeng-Antwi, A. Haruna, and R.O. Akinwale. 2015. Gains in grain yield of early maize cultivars developed during three breeding eras under multiple environments. Crop Science 55: 527–539. doi: 10.2135/cropsci2014.11.0783.CrossRefGoogle Scholar
  9. Badu-Apraku, B., M.A.B. Fakorede, A.F. Lum, and R.O. Akinwale. 2009. Improvement of yield and other traits of extra-early maize under stress and nonstress environments. Agronomy Journal 101: 381–389.CrossRefGoogle Scholar
  10. Bänziger, M., and H.R. Lafitte. 1997a. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Science 37: 1110–1117.CrossRefGoogle Scholar
  11. ———. 1997b. Breeding for N-stressed environments: How useful are N-stressed selection environments and secondary traits. In Developing Drought and Low N-Tolerant Maize. Proceedings of a Symposium, March 29–25, 1996, CIMMYT, El Batán, Mexico, ed. G.O. Edmeades, M. Bänziger, H.R. Mickelson, and C.B. Peña-Valdivia, 401–404. El Batán: CIMMYT.Google Scholar
  12. Bänziger, M., G.O. Edmeades, and H.R. Lafitte. 1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Science 39: 1035–1040.CrossRefGoogle Scholar
  13. Bänziger, M., G.O. Edmeades, D. Beck, and M. Bellon. 2000. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. El Batán: CIMMYT.Google Scholar
  14. Beyene, Y., K. Semagn, S. Mugo, A. Tarekegne, R. Babu, and B. Meisel. 2015. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science 55: 154–163. doi: 10.2135/cropsci2014.07.046.CrossRefGoogle Scholar
  15. Below, F.E., P.S. Brandua, R.J. Lambert, and R.H. Teyker. 1997. Combining ability for nitrogen use in maize. In Developing Drought- and Low N-Tolerant Maize, ed. G.O. Edmeades et al., 316–319. El Batán: CIMMYT/UNDP.Google Scholar
  16. Bennet, J.M., L.S. Mutti, P.S.C. Roa, and J.W. Jones. 1989. Interactive effects of nitrogen and water stress on biomass accumulation, nitrogen uptake, and seed yield of maize. Field Crops Research 19: 297–311.CrossRefGoogle Scholar
  17. Betràn, F.J., D. Beck, M. Bänziger, and G.O. Edmeades. 2003. Genetic Analysis of Inbred and Hybrid Grain Yield under Stress and Nonstress Environments in Tropical Maize. Crop Science 43: 807–817.CrossRefGoogle Scholar
  18. Castleberry, R.M., C.W. Crum, and C.F. Krull. 1984. Genetic yield improvement of U.S. Maize cultivars under varying fertility and climatic conditions. Crop Science 24: 33–36.CrossRefGoogle Scholar
  19. Cechin, I., and M.C. Press. 1993. The influence of nitrogen on growth and photosynthesis of sorghum infected with Striga hermonthica from different provenances. Weed Research 3: 289–298.Google Scholar
  20. De Souza, L.V., Glauco Vieira Miranda, J.C.C. Galvão, F.R. Eckert, É.E. Mantovani, R.O. Lima, and L.J.M. Guimarães. 2008. Genetic control of grain yield and nitrogen use efficiency in tropical maize. Pesquisa Agropecuária Brasileira 43 (11): 1517–1523.CrossRefGoogle Scholar
  21. Edmeades, G.O., J. Bolaños, S.C. Chapman, H.R. Lafitte, and M. Bänziger. 1999. Selection improves drought tolerance in tropical maize populations: Gains in biomass, grain yield, and harvest index. Crop Science 39: 1306–1315.CrossRefGoogle Scholar
  22. Edmeades, G.O., M. Bänziger, H. Campos, and J. Schussler. 2006. Improving tolerance to abiotic stresses in staple crops: a random or planned process? In. Plant Breeding – The Arnel R. Hallauer International Symposium (Eds. Lamkey, K., and M. Lee), pp. 293-309.Google Scholar
  23. Greenwood, E.A.N. 1976. Nitrogen stress in plants. Advances in Agronomy 28: 1–35.Ifie, B.E. 2013. Genetic analysis of early maturing maize inbred lines and hybrids performance 499 under Striga-infested and low soil nitrogen environments. A Ph.D. thesis, West Africa Centre for 500 Crop Improvement, University of Ghana, Legon.Google Scholar
  24. Ifie, B.E., B. Badu-Apraku, V. Gracen, and E.Y. Danquah. 2014. Genetic Analysis of Grain Yield of IITA and CIMMYT Early-maturing Maize Inbreds under Striga-infested and Low-soil Nitrogen Environments. Crop Science. doi:  10.2135/cropsci2014.07.0470.
  25. Kaya, B., P.E. Hildebrand, and P.K. Nair. 2000. Modeling changes in farming systems with the adoption of improved fallows in southern Mali. Agricultural Systems 66: 51–68.CrossRefGoogle Scholar
  26. Kamara, A.Y., A. Menkir, M.A.B. Fakorede, S.O. Ajala, B. Badu-Apraku, I. Kureh, and I. 2004. Agronomic performance of maize cultivars representing three decades of breeding in the Guinea Savannas of West and central Africa. The Journal of Agricultural Science 142 (5): 567–575.CrossRefGoogle Scholar
  27. Kim, S.K., and V.O. Adetimirin. 1997. Responses of tolerant and susceptible maize varieties to timing and rate of nitrogen under Striga hermonthica infestation. Agronomy Journal 89: 38–44.CrossRefGoogle Scholar
  28. Kim, S.K. 1991. Breeding maize for Striga tolerance 855 and the development of a field infestation technique. In Combating Striga in Africa. proceedings of the international workshop organized by IITA, ICRISAT, and IDRC, ed. S.K. Kim, 96–108. Ibadan: IITA.Google Scholar
  29. Katsantonis, N., A. Gagianas, and N. Fotiadis. 1988. Genetic control of nitrogen uptake, reduction and partitioning in maize (Zea mays L.). Maydica 33: 99–108.Google Scholar
  30. Kling, J.G., S.O. Oikeh, H.A. Akintoye, H.T. Heuberger, and W.J. Horst. 1997. Potential for developing nitrogen use efficient maize for low input agricultural systems in the moist savannas of Africa. In Developing Drought- and Low N Tolerant Maize. Proceedings of a Symposium, ed. G.O. Edmeades et al., 490–501. El Batán: CIMMYT.Google Scholar
  31. Lafitte, H.R., and M. Bänziger. 1997. Maize population improvement for low soil N: selection gains and identification of secondary traits. In Developing drought and low-N tolerant maize. Proceeding of symposium, ed. G.O. Edmeades, M. Banziger, H.R. Mickelson, and C.B. Pena-Valdivia, 485–489. El Batan: CUNNTT.Google Scholar
  32. Lafitte, H.R., and G.O. Edmeades. 1994. Improvement for tolerance to low soil nitrogen in tropical maize I. Selection criteria. Field Crops Research 39 (1): 1–14.CrossRefGoogle Scholar
  33. ———. 1995. Association between traits in tropical maize inbred lines and their hybrids under high and low soil nitrogen. Maydica 40: 259–267.Google Scholar
  34. Lagoke, S.T.O., V. Parkinson, and R.M. Agunbiade. 1991. Parasitic weeds and control methods in Africa. In Combating Striga in Africa. Proceeding of intl. workshop organized by IITA, ICRISAT, and IDRC, ed. S.K. Kim, 3–15. Ibadan: IITA.Google Scholar
  35. Logrono, M., and J.E. Lothrop. 1997. Impact of drought and low nitrogen on maize production in Asia. In Developing drought- and low N-Tolerant maize, ed. G.O. Edmeades et al., 39–43. El Batan: CIMMYT/UNDP.Google Scholar
  36. Makumbi, D., F.J. Betràn, M. Bänziger, and J. Ribaut. 2011. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180: 143–162.CrossRefGoogle Scholar
  37. Masuka, B., G.N. Atlin, M. Olsen, C. Magorokosho, M. Labuschagne, J. Crossa, M. Bänziger, K. Pixley, B. Vivek, A. van Biljon, J. Macrobert, G. Alvarado, B.M. Prasanna, D. Makumbi, A. Tarekegne, B. Das, M. Zaman-Allah, and J.E. Cairns. 2017a. Gains in maize genetic improvement in Eastern and Southern Africa (i) CIMMYT hybrid breeding pipeline. Crop Science 57: 168–179.CrossRefGoogle Scholar
  38. Masuka, B., C. Magorokosho, M. Olsen, G.N. Atlin, M. Bänziger, K. Pixley, B. Vivek, M. Labuschagne, R. Matemba-Mutasa, J. Burguenõ, J. Macrobert, B.M. Prasanna, D. Makumbi, A. Tarekegne, J. Crossa, M. Zaman-Allah, A. van Biljon, and J.E. Cairns. 2017b. Gains in maize genetic improvement in Eastern and Southern Africa (ii) CIMMYT open pollinated varieties (OPVs) breeding pipeline. Crop Science 57: 180–191.CrossRefGoogle Scholar
  39. McCown, R.L., B.A. Keating, M.E. Probert, and R.K. Jones. 1992. Strategies for sustainable crop production in semi-arid Africa. Outlook Agric 21: 21–31.CrossRefGoogle Scholar
  40. Meseka, S.K., A. Menkir, A.E.S. Ibrahim, and S.O. Ajala. 2006. Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low nitrogen. Maydica 51: 487–495.Google Scholar
  41. Miti, F., P. Tongoona, and J. Derera. 2010. S1 selection of local maize landraces for low soil nitrogen tolerance in Zambia. African Journal of Plant Science 4: 67–81.Google Scholar
  42. Mosier, A.R., J.K. Syers, and J.R. Freney. 2005. Global assessment of nitrogen fertilizer: The SCOPE/IGBP nitrogen fertilizer rapid assessment project. Science in China Series C 48: 795–766.Google Scholar
  43. Mumera, L.M., and F.E. Below. 1993. Crop ecology, production and management. Crop Science 33: 758–763.CrossRefGoogle Scholar
  44. O’Neill, P.M., J.F. Shanahan, J.S. Schepers, and B. Caldwell. 2004. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agronomy Journal 96: 1660–1667. doi: 10.2134/agronj2004.1660.CrossRefGoogle Scholar
  45. Pandey, R.K., J.W. Maranville, and A. Admou. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management 46: 1–13.CrossRefGoogle Scholar
  46. Snapp, S.S., D.D. Rohrbach, F. Simtowe, and H.A. Freeman. 2002. Sustainable soil management options for Malawi: can smallholder farmers grow more legumes Agric. Ecosystems and Environment 91 (1–3): 159–174.CrossRefGoogle Scholar
  47. Tollenaar, M. 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Science 29: 1365–1371.CrossRefGoogle Scholar
  48. Rizzi, E., C. Balconi, L. Nembrini, F.M. Stefanini, F. Coppolino, and M. Motto. 1993. Genetic variation and relationships among N related traits in maize. Maydica 38: 23–30.Google Scholar
  49. Rufino, M., E. Rowe, R. Delve, and K. Giller. 2006. Nitrogen cycling efficiencies through resource-poor African crop livestock systems. Agriculture, Ecosystems & Environment 112: 261–282.CrossRefGoogle Scholar
  50. Russell, W.A. 1984. Agronomic performance of maize cultivars representing different eras of breeding. Maydica 29: 375–390.Google Scholar
  51. Sanchez, P.A. 2010. Tripling crop yields in tropical Africa. Nature Geoscience 3: 299–300.CrossRefGoogle Scholar
  52. Weber, G., J. Smith, and M.V. Manyong. 1996. Systems dynamics and the definition of research domains for the Northern Guinea Savanna of West Africa. Agriculture, Ecosystems and Environment 57: 133–148.CrossRefGoogle Scholar
  53. Wolfe, D.W., D.W. Henderson, T.C. Hsiao, and A. Alvio. 1988. Interactive water and nitrogen effects on maize. II. Photosynthetic decline and longevity of individual leaves. Agronomy Journal 80: 865–870.CrossRefGoogle Scholar
  54. Zaidi, P.H., S. Rafique, and N.N. Singh. 2003. Response of maize (Zea mays L.) genotypes to excess moisture stress: morpho-physiological effects and basis of tolerance. European Journal of Agronomy 19: 383–399.CrossRefGoogle Scholar
  55. Zambezi, B.T., and C. Mwambula. 1997. Impact of drought and low soil nitrogen on maize production in the SADC Region. In Developing drought and low N-Tolerant maize. Proceedings of a symposium, ed. G.O. Edmeades et al., 29–34. El Batán: CIMMYT.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Institute of Tropical AgricultureIbadanNigeria
  2. 2.Obafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations