Tracing Nonlinear Cluster Dynamics Induced by Intense XUV, NIR and MIR Laser Pulses

Part of the Springer Series in Chemical Physics book series (CHEMICAL)


The ionization of nanoscale clusters by intense laser pulses is fundamentally different from the ionization of atoms or small molecules. Laser energy is efficiently absorbed by clusters, transforming them into nanoplasmas within femtoseconds. An overview of recent experiments is presented, in which the dynamics of clusters induced by intense laser pulses were traced on femtosecond to nanosecond timescales. The development of an intense high-harmonic generation (HHG) source in combination with pump-probe techniques using laser pulses from the extreme-ultraviolet (XUV) to the terahertz (THz) regime have made it possible to trace and control nonlinear cluster ionization and relaxation directly in the time domain. Very efficient population of Rydberg states by electron-ion recombination was found during the cluster expansion. We have discovered that these Rydberg atoms and ions can relax via a so far unobserved correlated electronic decay (CED) mechanism, during which one electron relaxes from a higher to a lower atomic bound state and transfers its excess energy to a neighboring electron that escapes from the cluster, leaving distinct signatures in the electron kinetic energy spectrum.


Electron Kinetic Energy Spectrum Rydberg Atoms Cluster Expansion Spin-orbit Excited States Reionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Marc Vrakking, Arnaud Rouzée, Thomas Fennel, Maria Krikunova, Alexander Kuleff, John Tisch, Jon Marangos, Serguei Patchkovskii and Misha Ivanov for the very fruitul collaborative work that has led to the results presented in this chapter. I would also like to gratefully acknowledge the PhD students and postdocs who contributed to the experimental and theoretical work described here. Funding for part of the work performed at the Imperial College London was provided by the Deutsche Forschungsgemeinschaft via a research fellowship.


  1. 1.
    U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)Google Scholar
  2. 2.
    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)Google Scholar
  3. 3.
    T. Ditmire, R.A. Smith, J.W.G. Tisch, M.H.R. Hutchinson, Phys. Rev. Lett. 78, 3121 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Y.L. Shao, T. Ditmire, J.W.G. Tisch, E. Springate, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 3343 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. Chen, J.J. Park, K.H. Hong, J.L. Kim, J. Zhang, C.H. Nam, Phys. Rev. E 66, 025402(R) (2002)Google Scholar
  6. 6.
    V. Kumarappan, M. Krishnamurthy, D. Mathur, Phys. Rev. A 66, 033203 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    E. Springate, S.A. Aseyev, S. Zamith, M.J.J. Vrakking, Phys. Rev. A 68, 053201 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    L. Zhang et al., Appl. Phys. Lett. 100, 014104 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ditmire, J.W.G. Tisch, E. Springate, M.B. Mason, N. Hay, R.A. Smith, J. Marangos, M.H.R. Hutchinson, Nature 386, 54 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Fukuda et al., Phys. Rev. Lett. 103, 065002 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Rajeev, T. Madhu Trivikram, K.P.M. Rishad, V. Narayanan, E. Krishnakumar, M. Krishnamurthy, Nat. Phys. 9, 185 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, K.B. Wharton, Nature 398, 489 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    A. McPherson, B. Thompson, A. Borisov, K. Boyer, C. Rhodes, Nature 370, 631 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Phys. Rev. Lett. 75, 3122 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    L.M. Chen et al., Sci. Rep. 3, 1912 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Wabnitz et al., Nature 420, 482 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    H. Thomas et al., Phys. Rev. Lett. 108, 133401 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C. Bostedt et al., Phys. Rev. Lett. 108, 093401 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L. Gomez et al., Science 345, 906 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    I. Barke et al., Nat. Commun. 6, 6187 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Gorkhover et al., Phys. Rev. Lett. 108, 245005 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    E.M. Snyder, S.A. Buzza, A.W. Castleman, Phys. Rev. Lett. 77, 3347 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, M.D. Perry, Phys. Rev. A 53, 3379 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    C. Bostedt et al., Phys. Rev. Lett. 100, 133401 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C. Rose-Petruck, K.J. Schafer, K.R. Wilson, C.P.J. Barty, Phys. Rev. A 55, 1182 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    T. Laarmann, M. Rusek, H. Wabnitz, J. Schulz, A.R.B. de Castro, P. Gürtler, W. Laasch, T. Möller, Phys. Rev. Lett. 95 (2005)Google Scholar
  27. 27.
    J. Zweiback, T. Ditmire, M.D. Perry, Phys. Rev. A 59, R3166 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 82, 3783 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    E. Allaria et al., Nat. Photonics 6, 699 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    E. Takahashi, Y. Nabekawa, K. Midorikawa, Opt. Lett. 27, 1920 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Hergott et al., Phys. Rev. A 66, 021801(R) (2002)ADSCrossRefGoogle Scholar
  32. 32.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    E. Takahashi, P. Lan, O.D. Mücke, Y. Nabekawa, K. Midorikawa, Nat. Commun. 4, 2691 (2013)ADSGoogle Scholar
  34. 34.
    B.F. Murphy, K. Hoffmann, A. Belolipetski, J. Keto, T. Ditmire, Phys. Rev. Lett. 101, 203401 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    B. Schütte, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 073003 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    B. Schütte, F. Campi, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 253401 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    U. Frühling et al., Nat. Photonics 3, 523 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    B. Schütte, U. Frühling, M. Wieland, A. Azima, M. Drescher, Opt. Express 19, 18833 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    B. Schütte, S. Bauch, U. Frühling, M. Wieland, M. Gensch, E. Plönjes, T. Gaumnitz, A. Azima, M. Bonitz, M. Drescher, Phys. Rev. Lett. 108, 253003 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    B. Schütte, T. Oelze, J. Lahl, M.J.J. Vrakking, A. Rouzée, M. Krikunova, (in preparation)Google Scholar
  41. 41.
    C. Gnodtke, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 108, 175003 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, K. Nagashima, Phys. Rev. Lett. 99, 043004 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    T. Döppner, J.P. Müller, A. Przystawik, S. Göde, J. Tiggesbäumker, K.H. Meiwes-Broer, C. Varin, L. Ramunno, T. Brabec, T. Fennel, Phys. Rev. Lett. 105, 053401 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    A. Mikaberidze, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 102, 128102 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    S.R. Krishnan et al., Phys. Rev. Lett. 107, 173402 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    B. Schütte, M. Arbeiter, A. Mermillod-Blondin, M.J.J. Vrakking, A. Rouzée, T. Fennel, Phys. Rev. Lett. 116, 033001 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908)ADSCrossRefGoogle Scholar
  48. 48.
    R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    F. Théberge, S. Chin, Appl. Phys. A 80, 1505 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    M. Negro, H. Ruf, B. Fabre, F. Dorchies, M. Devetta, D. Staedter, C. Vozzi, Y. Mairesse, S. Stagira, New J. Phys. 16, 073004 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    E. Skopalová, Y.C. El-Taha, A. Zaïr, M. Hohenberger, E. Springate, J.W.G. Tisch, R.A. Smith, J.P. Marangos, Phys. Rev. Lett. 104, 203401 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    S.R. Krishnan, R. Gopal, R. Rajeev, J. Jha, V. Sharma, M. Mudrich, R. Moshammer, M. Krishnamurthy, Phys. Chem. Chem. Phys. 16, 8721 (2014)CrossRefGoogle Scholar
  53. 53.
    B. Schütte, P. Ye, S. Patchkovskii, D.R. Austin, C. Brahms, C. Strüber, T. Witting, M.Yu. Ivanov, J.W.G. Tisch, J.P. Marangos, Sci. Rep. 6, 39664 (2016)Google Scholar
  54. 54.
    T. Fennel, T. Döppner, J. Passig, C.H. Schaal, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 98, 143401 (2007)Google Scholar
  55. 55.
    S. Zherebtsov et al., Nat. Phys. 7, 656 (2011)CrossRefGoogle Scholar
  56. 56.
    U. Saalmann, J.M. Rost, Phys. Rev. Lett. 100, 133006 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    C. Bostedt, H. Thomas, M. Hoener, T. Mller, U. Saalmann, I. Georgescu, C. Gnodtke, J.M. Rost, New J. Phys. 12, 083004 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    E. Ackad, N. Bigaouette, L. Ramunno, J. Phys. B 44, 165102 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    M. Müller et al., J. Phys. B 48, 174002 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    M. Krikunova et al., J. Phys. B 45, 105101 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    M. Arbeiter, C. Peltz, T. Fennel, Phys. Rev. A 89, 043428 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, J. Phys. B 48, 185101 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    D. Hrivnak, R. Kalus, Chem. Phys. 264, 319 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    H. Iwayama, M. Nagasono, J.R. Harries, E. Shigemasa, Opt. Express 20, 23174 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    L. Schroedter et al., Phys. Rev. Lett. 112, 183401 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    M. Hoener et al., J. Phys. B 41, 181001 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    T. Fennel, L. Ramunno, T. Brabec, Phys. Rev. Lett. 99, 233401 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    M. Tchaplyguine, M. Lundwall, M. Gisselbrecht, G. Öhrwall, R. Feifel, S. Sorensen, S. Svensson, N. Mårtensson, O. Björneholm, Phys. Rev. A 69, 031201(R) (2004)Google Scholar
  69. 69.
    B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, New J. Phys. 17, 033043 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    S. Li, R.R. Jones, Phys. Rev. Lett. 112, 143006 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Z.H. Loh, M. Khalil, R.E. Correa, R. Santra, C. Buth, S.R. Leone, Phys. Rev. Lett. 98, 143601 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    E. Goulielmakis et al., Nature 466, 739 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    S. Green, Annu. Rev. Phys. Chem. 32, 103 (1981)ADSCrossRefGoogle Scholar
  74. 74.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 114, 123002 (2015)ADSCrossRefGoogle Scholar
  76. 76.
    B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, Nat. Commun. 6, 8596 (2015)CrossRefGoogle Scholar
  77. 77.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  78. 78.
    R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  79. 79.
    G.M. Lawrence, Phys. Rev. A 2, 397 (1970)ADSCrossRefGoogle Scholar
  80. 80.
    R. Feifel, J.H.D. Eland, D. Edvardsson, J. Chem. Phys. 122, 144308 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    A.S. Sandhu, E. Gagnon, R. Santra, V. Sharma, W. Li, P. Ho, P. Ranitovic, C.L. Cocke, M.M. Murnane, H.C. Kapteyn, Science 322, 1081 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    P.M. Dehmer, W.L. Luken, W.A. Chupka, J. Chem. Phys. 67, 195 (1977)ADSCrossRefGoogle Scholar
  83. 83.
    H. Wang, M. Chini, S. Chen, C.H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, Z. Chang, Phys. Rev. Lett. 105, 143002 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Eur. Phys. J. D 70, 115 (2016)ADSCrossRefGoogle Scholar
  85. 85.
    B. Schütte, M.J.J. Vrakking, A. Rouzée, Phys. Rev. A. 95, 063417 (2017)Google Scholar
  86. 86.
    L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)ADSCrossRefGoogle Scholar
  87. 87.
    A.I. Kuleff, K. Gokhberg, S. Kopelke, L.S. Cederbaum, Phys. Rev. Lett. 105, 043004 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    S. Yase et al., Phys. Rev. A 88, 043203 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    Y. Ovcharenko et al., Phys. Rev. Lett. 112, 073401 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    D. Iablonskyi et al., Phys. Rev. Lett. 117, 276806 (2016)CrossRefGoogle Scholar
  91. 91.
    T. Takanashi et al., Phys. Rev. 118, 033202 (2017)Google Scholar
  92. 92.
    T. Oelze et al., Sci. Rep. 7, 40736 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Max-Born-InstitutBerlinGermany

Personalised recommendations