Skip to main content

The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project

Part of the Springer Series in Chemical Physics book series (PUILS)

Abstract

Globally, large international research infrastructures have over many decades promoted excellence in science and technology. Aligned with the international practice, the Europe Strategy Forum for Research Infrastructures (ESFRI) has developed and keeps updating a roadmap for research infrastructures. The Extreme Light Infrastructure (ELI) is one of the two large scale Laser Research Infrastructures (RI) proposed in the ESFRI Roadmap published in 2006. ELI aims to provide access to some of the most intense world-wide lasers for the international scientific user community, as well as secondary radiation and particle sources driven by them, offering to the users new interdisciplinary research opportunities. ELI is currently implemented as a distributed infrastructure in three pillars: ELI-Beamlines (ELI-BL) in Dolní Břežany, Czech Republic, ELI-Attosecond Light Pulse Source (ELI-ALPS) in Szeged, Hungary and ELI-Nuclear Physics (ELI-NP) in Magurele, Romania. This chapter is devoted to introduce the Hungarian pillar, ELI-ALPS, which will be operational in Szeged in 2018, with the primary mission to provide to the users the highest laboratory spatiotemporal resolution and a secondary mission to contribute to the technological development towards 200 petawatt (PW) lasers for high-field science, which is the ultimate goal of the ELI project. The chapter includes descriptions of the primary and secondary sources, while emphasis is given to selected examples of the scientific case of ELI-ALPS, presenting unique access offered by the technologies to be hosted in the infrastructure.

This is a preview of subscription content, access via your institution.

Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11
Fig. 10.12
Fig. 10.13

Adapted from [53]

Fig. 10.14
Fig. 10.15

Images taken from [4]

Fig. 10.16

Adapted from [107]

References

  1. http://www.eli-alps.hu/?q=en

  2. http://www.eli-beams.eu/

  3. http://www.eli-np.ro/

  4. D. Strickland, G. Mourou, Opt. Commun. 56, 219–221 (1985)

    CrossRef  ADS  Google Scholar 

  5. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, A. Tünnermann, 1 kW 1 mJ 8-channel ultrafast fiber laser. Opt. Lett. 41, 3439–3442 (2016)

    CrossRef  ADS  Google Scholar 

  6. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz, Appl. Phys. B 65, 189–196 (1997)

    CrossRef  ADS  Google Scholar 

  7. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, J. Limpert, Opt. Lett. 41, 4332–4335 (2016)

    CrossRef  ADS  Google Scholar 

  8. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, A. Tünnermann, Light: Sci. Appl. 1, 1 (2012)

    Google Scholar 

  9. T. Eidam, A. Hoffmann, S. Hädrich, J. Rothhardt, Z. Várallyay, K. Osvay, A. Tünnermann, J. Limpert, Concept for CEP-stable few-cycle pulses at 100 W average power, in High-Brightness Sources and Light-Driven Interactions, OSA Technical Digest (online) (Optical Society of America, 2016), paper HS3B.3

    Google Scholar 

  10. C. Jauregui, J. Limpert, A. Tünnermann, Nat. Photonics 273, 1 (2013)

    Google Scholar 

  11. J.P. Zou, C. Le Blanc, D.N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez, F. Giambruno, A. Fréneaux, F. Leconte, D. Badarau, J.M. Boudenne, D. Fournet, T. Valloton, J.L. Paillard, J.L. Veray, M. Pina, P. Monot, J.P. Chambaret, P. Martin, F. Mathieu, P. Audebert, F. Amiranof, High Power Las. Sci. Eng. 3, 3 (2015)

    CrossRef  Google Scholar 

  12. M. Kalashnikov, H. Cao, K. Osvay, V. Chvykov, Opt. Lett. 41, 25 (2016)

    CrossRef  ADS  Google Scholar 

  13. V. Chvykov, R.S. Nagymihaly, H. Cao, M. Kalashnikov, K. Osvay, Opt. Express 24, 3721 (2016)

    CrossRef  ADS  Google Scholar 

  14. V. Chvykov, H. Cao, R. Nagymihaly, M. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnürer, K. Osvay, Opt. Lett. 41, 3017 (2016)

    CrossRef  ADS  Google Scholar 

  15. J. Kruse et al., Phys. Rev. A 82, 061401(R) (2010)

    Google Scholar 

  16. J. Peatross, J.L. Chaloupka, D.D. Meyerhofer, Opt. Lett. 19, 942 (1994)

    Google Scholar 

  17. L. Poletto, G. Tondello, P. Villoresi, Rev. Sci. Instrum., 72, 2868 (2001)

    Google Scholar 

  18. L. Poletto, G. Tondello, P. Villoresi, Appl. Opt. 42, 6367 (2003)

    Google Scholar 

  19. L. Poletto, S. Bonora, M. Pascolini, P. Villoresi, Rev. Sci. Instrum. 75, 4413 (2004)

    Google Scholar 

  20. E. Takahashi et al., Opt. Lett. 27, 1920 (2002)

    CrossRef  ADS  Google Scholar 

  21. P. Rudawski et al., Rev. Sci. Instrum. 84, 073103 (2013)

    CrossRef  ADS  Google Scholar 

  22. J. Seres et al., Nat. Phys. 3, 878–883 (2007)

    CrossRef  Google Scholar 

  23. X. Feng et al., Phys. Rev. Lett. 103, 183901 (2009)

    CrossRef  ADS  Google Scholar 

  24. P. Tzallas et al., Nature 426, 267 (2003)

    CrossRef  ADS  Google Scholar 

  25. R. Hoerlein et al., New J. Phys. 12, 043020 (2010)

    CrossRef  ADS  Google Scholar 

  26. C. Heyl et al., J. Phys. B 45, 074020 (2012). P. Rudawski et al., Rev. Sci. Instrum. 84, 073103 (2013)

    Google Scholar 

  27. S. Kühn et al., J. Phys. B (in preparation)

    Google Scholar 

  28. Standardized design used at synchrotron and free electron laser facilities for atomic and molecular physics

    Google Scholar 

  29. C. Thaury, F. Quéré, J. Phys. B: At. Mol. Opt. Phys. 43, 213001 (2010)

    CrossRef  ADS  Google Scholar 

  30. U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)

    CrossRef  ADS  Google Scholar 

  31. M. Reduzzi, P. Carpeggiani, S. Kühn, F. Calegari, M. Nisoli, S. Stagira, C. Vozzi, P. Dombi, S. Kahaly, P. Tzallas, D. Charalambidis, K. Varju, K. Osvay, G. Sansone, J. Electron Spectros. Relat. Phenom. 204, 257 (2015)

    CrossRef  Google Scholar 

  32. A. Leblanc, S. Monchocé, C. Bourassin-Bouchet, S. Kahaly, F. Quéré, Nat. Phys. 12, 301 (2015)

    CrossRef  Google Scholar 

  33. A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, R. Lopez-Martens, Nat. Phys. 8, 416 (2012)

    CrossRef  Google Scholar 

  34. C. Thaury, H. George, F. Quéré, R. Loch, J.-P. Geindre, P. Monot, P. Martin, Nat. Phys. 4, 631 (2008)

    CrossRef  Google Scholar 

  35. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    CrossRef  ADS  Google Scholar 

  36. H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, F. Quéré, Nat. Commun. 5, 3403 (2014)

    CrossRef  ADS  Google Scholar 

  37. S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, F. Quéré, Phys. Rev. Lett. 110, 175001 (2013)

    CrossRef  ADS  Google Scholar 

  38. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, P. Martin, Nat. Phys. 3, 424 (2007)

    Google Scholar 

  39. B. Dromey, S.G. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Phys. Rev. Lett. 102, 225002 (2009)

    CrossRef  ADS  Google Scholar 

  40. S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, F. Quéré, Phys. Rev. Lett. 112, 145008 (2014)

    CrossRef  ADS  Google Scholar 

  41. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Phys. Rev. Lett. 96, 125004 (2006)

    CrossRef  ADS  Google Scholar 

  42. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    CrossRef  ADS  Google Scholar 

  43. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, Pa Norreys, M. Zepf, Phys. Rev. Lett. 99, 1 (2007)

    CrossRef  Google Scholar 

  44. D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. Lewis, R.S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, Nat. Commun. 4, 1763 (2013)

    CrossRef  ADS  Google Scholar 

  45. B. Dromey, S. Rykovanov, M. Yeung, R. Hörlein, D. Jung, D.C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, H. Ruhl, J.C. Fernandez, C.L.S. Lewis, M. Zepf, B.M. Hegelich, Nat. Phys. 8, 804 (2012)

    CrossRef  Google Scholar 

  46. S. Palaniyappan, B.M. Hegelich, H.-C. Wu, D. Jung, D.C. Gautier, L. Yin, B.J. Albright, R.P. Johnson, T. Shimada, S. Letzring, D.T. Offermann, J. Ren, C. Huang, R. Hörlein, B. Dromey, J.C. Fernandez, R.C. Shah, Nat. Phys. 8, 763 (2012)

    CrossRef  Google Scholar 

  47. A.A. Gonoskov, A.V. Korzhimanov, A.V. Kim, M. Marklund, A.M. Sergeev, Phys. Rev. E 84, 046403 (2011)

    CrossRef  ADS  Google Scholar 

  48. A. Lévy, T. Ceccotti, P. D’Oliveira, F. Réau, M. Perdrix, F. Quéré, P. Monot, M. Bougeard, H. Lagadec, P. Martin, J.-P. Geindre, P. Audebert, Opt. Lett. 32, 310 (2007)

    CrossRef  ADS  Google Scholar 

  49. J.A. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, F. Quéré, Nat. Photonics 6, 829 (2012)

    Google Scholar 

  50. H. Vincenti, F. Quéré, Phys. Rev. Lett. 108, 1 (2012)

    CrossRef  Google Scholar 

  51. F. Quéré, H. Vincenti, A. Borot, S. Monchocé, T.J. Hammond, K.T. Kim, J.A. Wheeler, C. Zhang, T. Ruchon, T. Auguste, J.F. Hergott, D.M. Villeneuve, P.B. Corkum, R. Lopez-Martens, J. Phys. B: At. Mol. Opt. Phys. 47, 124004 (2014)

    CrossRef  ADS  Google Scholar 

  52. A. Borot, A. Malvache, X. Chen, D. Douillet, G. Iaquianiello, T. Lefrou, P. Audebert, J.-P. Geindre, G. Mourou, F. Quéré, R. Lopez-Martens, Opt. Lett. 36, 1461 (2011)

    CrossRef  ADS  Google Scholar 

  53. A. Borot, D. Douillet, G. Iaquaniello, T. Lefrou, P. Audebert, J.-P. Geindre, R. Lopez-Martens, Rev. Sci. Instrum. 85, 013104 (2014)

    CrossRef  ADS  Google Scholar 

  54. C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A.G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M.C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G.G. Paulus, Phys. Rev. Lett. 109, 125002 (2012)

    Google Scholar 

  55. M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, R. Lopez-Martens, Phys. Rev. Lett. 116, 185001 (2016)

    CrossRef  ADS  Google Scholar 

  56. M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, J. Faure, Nat. Phys. 12, 355 (2015)

    CrossRef  Google Scholar 

  57. G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8 (2006)

    Google Scholar 

  58. S. Kahaly, S. Monchocé, V. Gallet, O. Gobert, F. Réau, O. Tcherbakoff, P. D’Oliveira, P. Martin, F. Quéré, Appl. Phys. Lett. 104, 054103 (2014)

    CrossRef  ADS  Google Scholar 

  59. V. Gallet, S. Kahaly, O. Gobert, F. Quéré, Opt. Lett. 39, 4687 (2014)

    CrossRef  ADS  Google Scholar 

  60. Z. Chang, Fundamentals of Attosecond Optics (CRC Press, 2011)

    Google Scholar 

  61. M. Chini, S. Gilbertson, S.D. Khan, Z. Chang, Opt. Express 18, 13006 (2010)

    CrossRef  ADS  Google Scholar 

  62. Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Nat. Phys. 5, 124 (2009)

    CrossRef  Google Scholar 

  63. U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plönjes, M. Drescher, Nat. Photonics 3, 523 (2009)

    CrossRef  ADS  Google Scholar 

  64. F. Ardana-Lamas, C. Erny, A.G. Stepanov, I. Gorgisyan, P. Juranić, R. Abela, C.P. Hauri, Phys. Rev. A 93, 043838 (2016)

    CrossRef  ADS  Google Scholar 

  65. M. Reduzzi, P. Carpeggiani, S. Kühn, F. Calegari, M. Nisoli, S. Stagira, C. Vozzi, P. Dombi, S. Kahaly, P. Tzallas, D. Charalambidis, K. Varju, K. Osvay, G. Sansone, J. Electron Spectros. Relat. Phenomena 204, 257 (2015)

    CrossRef  Google Scholar 

  66. G. Sansone, L. Poletto, M. Nisoli, Nat. Photonics 5, 655 (2011)

    CrossRef  ADS  Google Scholar 

  67. M.C. Hoffmann, J.A. Fülöp, J. Phys. D 44, 083001 (2011)

    CrossRef  ADS  Google Scholar 

  68. T. Kampfrath et al., Nat. Photonics 7, 680 (2013)

    CrossRef  ADS  Google Scholar 

  69. E.A. Nanni et al., Nat. Commun. 6, 8486 (2015)

    CrossRef  Google Scholar 

  70. L. Pálfalvi et al., Phys. Rev. ST Accel. Beams 17, 031301 (2014)

    CrossRef  ADS  Google Scholar 

  71. J. Hebling et al., Phys. Rev. B 81, 035201 (2010)

    CrossRef  ADS  Google Scholar 

  72. R. Matsunaga et al., Science 345, 1145 (2014)

    MathSciNet  CrossRef  ADS  Google Scholar 

  73. S. Fleischer et al., Phys. Rev. Lett. 107, 163603 (2011)

    CrossRef  ADS  Google Scholar 

  74. T. Kubacka et al., Science 343, 1333 (2014)

    CrossRef  ADS  Google Scholar 

  75. J. Hebling et al., Opt. Express 10, 1161 (2002)

    CrossRef  ADS  Google Scholar 

  76. K. Kawase et al., Opt. Express 11, 2549 (2003)

    CrossRef  ADS  Google Scholar 

  77. M. Jewariya et al., Opt. Express 21, 2423 (2013)

    CrossRef  ADS  Google Scholar 

  78. A. Sharma et al., Phys. Plasmas 23, 063111 (2016)

    CrossRef  ADS  Google Scholar 

  79. J.A. Fülöp et al., Optica 3, 1075 ​(2016)

    Google Scholar 

  80. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Google Scholar 

  81. S.P.D. Mangles et al., J. Faure, et al., C.G.R. Geddes, et al., Nature 431 (2004)

    Google Scholar 

  82. W.P. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014)

    CrossRef  ADS  Google Scholar 

  83. Z-H. He et al. New J. Phys. 15, 053016 (2013)

    Google Scholar 

  84. J.M. Cole et al. Sci. Rep. 5, 13244 (2015). Cole, J.M. et al., Plasma Phys. Control. Fusion 58, 014008 (2015)

    Google Scholar 

  85. P. Tzallas et al. Nat. Phys. 7, 781 (2011)

    Google Scholar 

  86. P. Carpeggiani et al., Phys. Rev. A 89, 023420 (2014)

    CrossRef  ADS  Google Scholar 

  87. T. Okino, Y. Furukawa, A.A. Eilanlou, Y. Nabekawa, E.J. Takahashi, K. Yamanouchi, K. Midorikawa, JSAP-OSA (2014). https://doi.org/10.1364/JSAP.2014.17a_C4_7

    Google Scholar 

  88. Feist et al., Phys. Rev. Lett. 103, 06302 (2009)

    CrossRef  Google Scholar 

  89. A. Palacios et al., Proc. Natl. Acad. Sci. USA 111, 3973 (2014)

    CrossRef  ADS  Google Scholar 

  90. A.I. Kuleff, S. Lünnemann, L.S. Cederbaum, Chem. Phys. 414, 100 (2013)

    CrossRef  ADS  Google Scholar 

  91. F. Calegari et al., Science 346, 336 (2014)

    CrossRef  ADS  Google Scholar 

  92. XFEL TDR

    Google Scholar 

  93. M. Lemeshko et al., Mol. Phys. 111, 1648 (2013)

    CrossRef  ADS  Google Scholar 

  94. B. Delley, J. Mol. Struct. (THEOCHEM) 434, 229 (1998)

    CrossRef  Google Scholar 

  95. G.W. Richings, G.A. Worth, J. Phys. Chem. A 116, 11228 (2012)

    CrossRef  Google Scholar 

  96. C. Sanz-Sanz, G.W. Richings, G.A. Worth, Faraday Discuss. 153, 275 (2011)

    CrossRef  ADS  Google Scholar 

  97. Y.C. Han et al. J. Chem. Phys. 130 (2009)

    Google Scholar 

  98. A.G.G.M. Tielens, Ann. Rev. Astron. Astrophys. 46, 289–337 (2008)

    CrossRef  ADS  Google Scholar 

  99. A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)

    CrossRef  ADS  Google Scholar 

  100. A. Marciniak et al., Nat. Commun. 6, 7909 (2015)

    CrossRef  Google Scholar 

  101. P. Puschnig et al., Science 326, 702 (2009)

    CrossRef  ADS  Google Scholar 

  102. A. Fohlisch et al., Nature 436, 373 (2005)

    CrossRef  ADS  Google Scholar 

  103. T. Barillot et al., Phys. Rev. A 91, 033413 (2016)

    CrossRef  ADS  Google Scholar 

  104. H. Li et al., Phys. Rev. Lett. 114, 123004 (2015)

    CrossRef  ADS  Google Scholar 

  105. J. Vogelsang, J. Robin, B.J. Nagy et al., Nano Lett. (2015)

    Google Scholar 

  106. E. Gerstner, Laser physics: extreme light. Nature 446, 16 (2007)

    CrossRef  ADS  Google Scholar 

  107. H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239 (1997)

    CrossRef  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge contributions of colleagues of the Lund University (Sylvain Maclot, Per Johnsson, Cord Arnold, Christoph Heyl, Filippo Campi, Hampus Wikmark, Bastian Manschwetus, Miguel Miranda), IFN-CNR (Mauro Nisoli, Francesca Calegari, Michele Devetta, Fabio Frassetto, Erik Mänsson, Luca Poletto, Salvatore Stagira, Caterina Vozzi), FO.R.T.H. (Constantinos Kalpouzos) and LOA to the Technical Design Reports of the GHHG and SHHG sources that has been used in this manuscript. The project is financed from the EU Structural Funds through the National Economy and Innovation Development Program of GINOP-2.3.6-15-2015-00001 of Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Charalambidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Charalambidis, D. et al. (2017). The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project. In: Yamanouchi, K., Hill III, W., Paulus, G. (eds) Progress in Ultrafast Intense Laser Science XIII. Springer Series in Chemical Physics(). Springer, Cham. https://doi.org/10.1007/978-3-319-64840-8_10

Download citation