Advertisement

The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project

  • Dimitris CharalambidisEmail author
  • Viktor Chikán
  • Eric Cormier
  • Péter Dombi
  • József András Fülöp
  • Csaba Janáky
  • Subhendu Kahaly
  • Mikhail Kalashnikov
  • Christos Kamperidis
  • Sergei Kühn
  • Franck Lepine
  • Anne L’Huillier
  • Rodrigo Lopez-Martens
  • Sudipta Mondal
  • Károly Osvay
  • László Óvári
  • Piotr Rudawski
  • Giuseppe Sansone
  • Paris Tzallas
  • Zoltán Várallyay
  • Katalin Varjú
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL)

Abstract

Globally, large international research infrastructures have over many decades promoted excellence in science and technology. Aligned with the international practice, the Europe Strategy Forum for Research Infrastructures (ESFRI) has developed and keeps updating a roadmap for research infrastructures. The Extreme Light Infrastructure (ELI) is one of the two large scale Laser Research Infrastructures (RI) proposed in the ESFRI Roadmap published in 2006. ELI aims to provide access to some of the most intense world-wide lasers for the international scientific user community, as well as secondary radiation and particle sources driven by them, offering to the users new interdisciplinary research opportunities. ELI is currently implemented as a distributed infrastructure in three pillars: ELI-Beamlines (ELI-BL) in Dolní Břežany, Czech Republic, ELI-Attosecond Light Pulse Source (ELI-ALPS) in Szeged, Hungary and ELI-Nuclear Physics (ELI-NP) in Magurele, Romania. This chapter is devoted to introduce the Hungarian pillar, ELI-ALPS, which will be operational in Szeged in 2018, with the primary mission to provide to the users the highest laboratory spatiotemporal resolution and a secondary mission to contribute to the technological development towards 200 petawatt (PW) lasers for high-field science, which is the ultimate goal of the ELI project. The chapter includes descriptions of the primary and secondary sources, while emphasis is given to selected examples of the scientific case of ELI-ALPS, presenting unique access offered by the technologies to be hosted in the infrastructure.

Notes

Acknowledgements

The authors acknowledge contributions of colleagues of the Lund University (Sylvain Maclot, Per Johnsson, Cord Arnold, Christoph Heyl, Filippo Campi, Hampus Wikmark, Bastian Manschwetus, Miguel Miranda), IFN-CNR (Mauro Nisoli, Francesca Calegari, Michele Devetta, Fabio Frassetto, Erik Mänsson, Luca Poletto, Salvatore Stagira, Caterina Vozzi), FO.R.T.H. (Constantinos Kalpouzos) and LOA to the Technical Design Reports of the GHHG and SHHG sources that has been used in this manuscript. The project is financed from the EU Structural Funds through the National Economy and Innovation Development Program of GINOP-2.3.6-15-2015-00001 of Hungary.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    D. Strickland, G. Mourou, Opt. Commun. 56, 219–221 (1985)CrossRefADSGoogle Scholar
  5. 5.
    M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, A. Tünnermann, 1 kW 1 mJ 8-channel ultrafast fiber laser. Opt. Lett. 41, 3439–3442 (2016)CrossRefADSGoogle Scholar
  6. 6.
    M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz, Appl. Phys. B 65, 189–196 (1997)CrossRefADSGoogle Scholar
  7. 7.
    S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, J. Limpert, Opt. Lett. 41, 4332–4335 (2016)CrossRefADSGoogle Scholar
  8. 8.
    J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, A. Tünnermann, Light: Sci. Appl. 1, 1 (2012)Google Scholar
  9. 9.
    T. Eidam, A. Hoffmann, S. Hädrich, J. Rothhardt, Z. Várallyay, K. Osvay, A. Tünnermann, J. Limpert, Concept for CEP-stable few-cycle pulses at 100 W average power, in High-Brightness Sources and Light-Driven Interactions, OSA Technical Digest (online) (Optical Society of America, 2016), paper HS3B.3Google Scholar
  10. 10.
    C. Jauregui, J. Limpert, A. Tünnermann, Nat. Photonics 273, 1 (2013)Google Scholar
  11. 11.
    J.P. Zou, C. Le Blanc, D.N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez, F. Giambruno, A. Fréneaux, F. Leconte, D. Badarau, J.M. Boudenne, D. Fournet, T. Valloton, J.L. Paillard, J.L. Veray, M. Pina, P. Monot, J.P. Chambaret, P. Martin, F. Mathieu, P. Audebert, F. Amiranof, High Power Las. Sci. Eng. 3, 3 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Kalashnikov, H. Cao, K. Osvay, V. Chvykov, Opt. Lett. 41, 25 (2016)CrossRefADSGoogle Scholar
  13. 13.
    V. Chvykov, R.S. Nagymihaly, H. Cao, M. Kalashnikov, K. Osvay, Opt. Express 24, 3721 (2016)CrossRefADSGoogle Scholar
  14. 14.
    V. Chvykov, H. Cao, R. Nagymihaly, M. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnürer, K. Osvay, Opt. Lett. 41, 3017 (2016)CrossRefADSGoogle Scholar
  15. 15.
    J. Kruse et al., Phys. Rev. A 82, 061401(R) (2010)Google Scholar
  16. 16.
    J. Peatross, J.L. Chaloupka, D.D. Meyerhofer, Opt. Lett. 19, 942 (1994)Google Scholar
  17. 17.
    L. Poletto, G. Tondello, P. Villoresi, Rev. Sci. Instrum., 72, 2868 (2001)Google Scholar
  18. 18.
    L. Poletto, G. Tondello, P. Villoresi, Appl. Opt. 42, 6367 (2003)Google Scholar
  19. 19.
    L. Poletto, S. Bonora, M. Pascolini, P. Villoresi, Rev. Sci. Instrum. 75, 4413 (2004)Google Scholar
  20. 20.
    E. Takahashi et al., Opt. Lett. 27, 1920 (2002)CrossRefADSGoogle Scholar
  21. 21.
    P. Rudawski et al., Rev. Sci. Instrum. 84, 073103 (2013)CrossRefADSGoogle Scholar
  22. 22.
    J. Seres et al., Nat. Phys. 3, 878–883 (2007)CrossRefGoogle Scholar
  23. 23.
    X. Feng et al., Phys. Rev. Lett. 103, 183901 (2009)CrossRefADSGoogle Scholar
  24. 24.
    P. Tzallas et al., Nature 426, 267 (2003)CrossRefADSGoogle Scholar
  25. 25.
    R. Hoerlein et al., New J. Phys. 12, 043020 (2010)CrossRefADSGoogle Scholar
  26. 26.
    C. Heyl et al., J. Phys. B 45, 074020 (2012). P. Rudawski et al., Rev. Sci. Instrum. 84, 073103 (2013)Google Scholar
  27. 27.
    S. Kühn et al., J. Phys. B (in preparation)Google Scholar
  28. 28.
    Standardized design used at synchrotron and free electron laser facilities for atomic and molecular physicsGoogle Scholar
  29. 29.
    C. Thaury, F. Quéré, J. Phys. B: At. Mol. Opt. Phys. 43, 213001 (2010)CrossRefADSGoogle Scholar
  30. 30.
    U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)CrossRefADSGoogle Scholar
  31. 31.
    M. Reduzzi, P. Carpeggiani, S. Kühn, F. Calegari, M. Nisoli, S. Stagira, C. Vozzi, P. Dombi, S. Kahaly, P. Tzallas, D. Charalambidis, K. Varju, K. Osvay, G. Sansone, J. Electron Spectros. Relat. Phenom. 204, 257 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Leblanc, S. Monchocé, C. Bourassin-Bouchet, S. Kahaly, F. Quéré, Nat. Phys. 12, 301 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, R. Lopez-Martens, Nat. Phys. 8, 416 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Thaury, H. George, F. Quéré, R. Loch, J.-P. Geindre, P. Monot, P. Martin, Nat. Phys. 4, 631 (2008)CrossRefGoogle Scholar
  35. 35.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)CrossRefADSGoogle Scholar
  36. 36.
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, F. Quéré, Nat. Commun. 5, 3403 (2014)CrossRefADSGoogle Scholar
  37. 37.
    S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, F. Quéré, Phys. Rev. Lett. 110, 175001 (2013)CrossRefADSGoogle Scholar
  38. 38.
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, P. Martin, Nat. Phys. 3, 424 (2007)Google Scholar
  39. 39.
    B. Dromey, S.G. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Phys. Rev. Lett. 102, 225002 (2009)CrossRefADSGoogle Scholar
  40. 40.
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, F. Quéré, Phys. Rev. Lett. 112, 145008 (2014)CrossRefADSGoogle Scholar
  41. 41.
    F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Phys. Rev. Lett. 96, 125004 (2006)CrossRefADSGoogle Scholar
  42. 42.
    T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)CrossRefADSGoogle Scholar
  43. 43.
    B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, Pa Norreys, M. Zepf, Phys. Rev. Lett. 99, 1 (2007)CrossRefGoogle Scholar
  44. 44.
    D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. Lewis, R.S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, Nat. Commun. 4, 1763 (2013)CrossRefADSGoogle Scholar
  45. 45.
    B. Dromey, S. Rykovanov, M. Yeung, R. Hörlein, D. Jung, D.C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, H. Ruhl, J.C. Fernandez, C.L.S. Lewis, M. Zepf, B.M. Hegelich, Nat. Phys. 8, 804 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Palaniyappan, B.M. Hegelich, H.-C. Wu, D. Jung, D.C. Gautier, L. Yin, B.J. Albright, R.P. Johnson, T. Shimada, S. Letzring, D.T. Offermann, J. Ren, C. Huang, R. Hörlein, B. Dromey, J.C. Fernandez, R.C. Shah, Nat. Phys. 8, 763 (2012)CrossRefGoogle Scholar
  47. 47.
    A.A. Gonoskov, A.V. Korzhimanov, A.V. Kim, M. Marklund, A.M. Sergeev, Phys. Rev. E 84, 046403 (2011)CrossRefADSGoogle Scholar
  48. 48.
    A. Lévy, T. Ceccotti, P. D’Oliveira, F. Réau, M. Perdrix, F. Quéré, P. Monot, M. Bougeard, H. Lagadec, P. Martin, J.-P. Geindre, P. Audebert, Opt. Lett. 32, 310 (2007)CrossRefADSGoogle Scholar
  49. 49.
    J.A. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, F. Quéré, Nat. Photonics 6, 829 (2012)Google Scholar
  50. 50.
    H. Vincenti, F. Quéré, Phys. Rev. Lett. 108, 1 (2012)CrossRefGoogle Scholar
  51. 51.
    F. Quéré, H. Vincenti, A. Borot, S. Monchocé, T.J. Hammond, K.T. Kim, J.A. Wheeler, C. Zhang, T. Ruchon, T. Auguste, J.F. Hergott, D.M. Villeneuve, P.B. Corkum, R. Lopez-Martens, J. Phys. B: At. Mol. Opt. Phys. 47, 124004 (2014)CrossRefADSGoogle Scholar
  52. 52.
    A. Borot, A. Malvache, X. Chen, D. Douillet, G. Iaquianiello, T. Lefrou, P. Audebert, J.-P. Geindre, G. Mourou, F. Quéré, R. Lopez-Martens, Opt. Lett. 36, 1461 (2011)CrossRefADSGoogle Scholar
  53. 53.
    A. Borot, D. Douillet, G. Iaquaniello, T. Lefrou, P. Audebert, J.-P. Geindre, R. Lopez-Martens, Rev. Sci. Instrum. 85, 013104 (2014)CrossRefADSGoogle Scholar
  54. 54.
    C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A.G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M.C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G.G. Paulus, Phys. Rev. Lett. 109, 125002 (2012)Google Scholar
  55. 55.
    M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, R. Lopez-Martens, Phys. Rev. Lett. 116, 185001 (2016)CrossRefADSGoogle Scholar
  56. 56.
    M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, J. Faure, Nat. Phys. 12, 355 (2015)CrossRefGoogle Scholar
  57. 57.
    G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8 (2006)Google Scholar
  58. 58.
    S. Kahaly, S. Monchocé, V. Gallet, O. Gobert, F. Réau, O. Tcherbakoff, P. D’Oliveira, P. Martin, F. Quéré, Appl. Phys. Lett. 104, 054103 (2014)CrossRefADSGoogle Scholar
  59. 59.
    V. Gallet, S. Kahaly, O. Gobert, F. Quéré, Opt. Lett. 39, 4687 (2014)CrossRefADSGoogle Scholar
  60. 60.
    Z. Chang, Fundamentals of Attosecond Optics (CRC Press, 2011)Google Scholar
  61. 61.
    M. Chini, S. Gilbertson, S.D. Khan, Z. Chang, Opt. Express 18, 13006 (2010)CrossRefADSGoogle Scholar
  62. 62.
    Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Nat. Phys. 5, 124 (2009)CrossRefGoogle Scholar
  63. 63.
    U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plönjes, M. Drescher, Nat. Photonics 3, 523 (2009)CrossRefADSGoogle Scholar
  64. 64.
    F. Ardana-Lamas, C. Erny, A.G. Stepanov, I. Gorgisyan, P. Juranić, R. Abela, C.P. Hauri, Phys. Rev. A 93, 043838 (2016)CrossRefADSGoogle Scholar
  65. 65.
    M. Reduzzi, P. Carpeggiani, S. Kühn, F. Calegari, M. Nisoli, S. Stagira, C. Vozzi, P. Dombi, S. Kahaly, P. Tzallas, D. Charalambidis, K. Varju, K. Osvay, G. Sansone, J. Electron Spectros. Relat. Phenomena 204, 257 (2015)CrossRefGoogle Scholar
  66. 66.
    G. Sansone, L. Poletto, M. Nisoli, Nat. Photonics 5, 655 (2011)CrossRefADSGoogle Scholar
  67. 67.
    M.C. Hoffmann, J.A. Fülöp, J. Phys. D 44, 083001 (2011)CrossRefADSGoogle Scholar
  68. 68.
    T. Kampfrath et al., Nat. Photonics 7, 680 (2013)CrossRefADSGoogle Scholar
  69. 69.
    E.A. Nanni et al., Nat. Commun. 6, 8486 (2015)CrossRefGoogle Scholar
  70. 70.
    L. Pálfalvi et al., Phys. Rev. ST Accel. Beams 17, 031301 (2014)CrossRefADSGoogle Scholar
  71. 71.
    J. Hebling et al., Phys. Rev. B 81, 035201 (2010)CrossRefADSGoogle Scholar
  72. 72.
    R. Matsunaga et al., Science 345, 1145 (2014)MathSciNetCrossRefADSGoogle Scholar
  73. 73.
    S. Fleischer et al., Phys. Rev. Lett. 107, 163603 (2011)CrossRefADSGoogle Scholar
  74. 74.
    T. Kubacka et al., Science 343, 1333 (2014)CrossRefADSGoogle Scholar
  75. 75.
    J. Hebling et al., Opt. Express 10, 1161 (2002)CrossRefADSGoogle Scholar
  76. 76.
    K. Kawase et al., Opt. Express 11, 2549 (2003)CrossRefADSGoogle Scholar
  77. 77.
    M. Jewariya et al., Opt. Express 21, 2423 (2013)CrossRefADSGoogle Scholar
  78. 78.
    A. Sharma et al., Phys. Plasmas 23, 063111 (2016)CrossRefADSGoogle Scholar
  79. 79.
    J.A. Fülöp et al., Optica 3, 1075 ​(2016)Google Scholar
  80. 80.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)Google Scholar
  81. 81.
    S.P.D. Mangles et al., J. Faure, et al., C.G.R. Geddes, et al., Nature 431 (2004)Google Scholar
  82. 82.
    W.P. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014)CrossRefADSGoogle Scholar
  83. 83.
    Z-H. He et al. New J. Phys. 15, 053016 (2013)Google Scholar
  84. 84.
    J.M. Cole et al. Sci. Rep. 5, 13244 (2015). Cole, J.M. et al., Plasma Phys. Control. Fusion 58, 014008 (2015)Google Scholar
  85. 85.
    P. Tzallas et al. Nat. Phys. 7, 781 (2011)Google Scholar
  86. 86.
    P. Carpeggiani et al., Phys. Rev. A 89, 023420 (2014)CrossRefADSGoogle Scholar
  87. 87.
    T. Okino, Y. Furukawa, A.A. Eilanlou, Y. Nabekawa, E.J. Takahashi, K. Yamanouchi, K. Midorikawa, JSAP-OSA (2014). https://doi.org/10.1364/JSAP.2014.17a_C4_7 Google Scholar
  88. 88.
    Feist et al., Phys. Rev. Lett. 103, 06302 (2009)CrossRefGoogle Scholar
  89. 89.
    A. Palacios et al., Proc. Natl. Acad. Sci. USA 111, 3973 (2014)CrossRefADSGoogle Scholar
  90. 90.
    A.I. Kuleff, S. Lünnemann, L.S. Cederbaum, Chem. Phys. 414, 100 (2013)CrossRefADSGoogle Scholar
  91. 91.
    F. Calegari et al., Science 346, 336 (2014)CrossRefADSGoogle Scholar
  92. 92.
  93. 93.
    M. Lemeshko et al., Mol. Phys. 111, 1648 (2013)CrossRefADSGoogle Scholar
  94. 94.
    B. Delley, J. Mol. Struct. (THEOCHEM) 434, 229 (1998)CrossRefGoogle Scholar
  95. 95.
    G.W. Richings, G.A. Worth, J. Phys. Chem. A 116, 11228 (2012)CrossRefGoogle Scholar
  96. 96.
    C. Sanz-Sanz, G.W. Richings, G.A. Worth, Faraday Discuss. 153, 275 (2011)CrossRefADSGoogle Scholar
  97. 97.
    Y.C. Han et al. J. Chem. Phys. 130 (2009)Google Scholar
  98. 98.
    A.G.G.M. Tielens, Ann. Rev. Astron. Astrophys. 46, 289–337 (2008)CrossRefADSGoogle Scholar
  99. 99.
    A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)CrossRefADSGoogle Scholar
  100. 100.
    A. Marciniak et al., Nat. Commun. 6, 7909 (2015)CrossRefGoogle Scholar
  101. 101.
    P. Puschnig et al., Science 326, 702 (2009)CrossRefADSGoogle Scholar
  102. 102.
    A. Fohlisch et al., Nature 436, 373 (2005)CrossRefADSGoogle Scholar
  103. 103.
    T. Barillot et al., Phys. Rev. A 91, 033413 (2016)CrossRefADSGoogle Scholar
  104. 104.
    H. Li et al., Phys. Rev. Lett. 114, 123004 (2015)CrossRefADSGoogle Scholar
  105. 105.
    J. Vogelsang, J. Robin, B.J. Nagy et al., Nano Lett. (2015)Google Scholar
  106. 106.
    E. Gerstner, Laser physics: extreme light. Nature 446, 16 (2007)CrossRefADSGoogle Scholar
  107. 107.
    H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dimitris Charalambidis
    • 1
    • 13
    Email author
  • Viktor Chikán
    • 2
    • 13
  • Eric Cormier
    • 3
    • 13
  • Péter Dombi
    • 4
    • 13
  • József András Fülöp
    • 5
    • 13
  • Csaba Janáky
    • 6
    • 13
  • Subhendu Kahaly
    • 13
  • Mikhail Kalashnikov
    • 7
    • 13
  • Christos Kamperidis
    • 13
  • Sergei Kühn
    • 13
  • Franck Lepine
    • 8
    • 13
  • Anne L’Huillier
    • 9
  • Rodrigo Lopez-Martens
    • 10
    • 13
  • Sudipta Mondal
    • 13
  • Károly Osvay
    • 11
    • 13
  • László Óvári
    • 6
    • 13
  • Piotr Rudawski
    • 9
  • Giuseppe Sansone
    • 12
    • 13
  • Paris Tzallas
    • 1
    • 13
  • Zoltán Várallyay
    • 13
  • Katalin Varjú
    • 11
    • 13
  1. 1.FORTH-IESLHeraklionGreece
  2. 2.Kansas State UniversityManhattanUSA
  3. 3.University of Bordeaux, CEA, CNRS, CELIA, UMR 5107TalenceFrance
  4. 4.Wigner RCPBudapestHungary
  5. 5.University of PécsPécsHungary
  6. 6.University of SzegedSzegedHungary
  7. 7.MBIBerlinGermany
  8. 8.UMR 5306 CNRS Univ. Lyon 1Villeurbanne CedexFrance
  9. 9.Lund UniversityLundSweden
  10. 10.LOA, UMR 7639PalaiseauFrance
  11. 11.University of SzegedSzegedHungary
  12. 12.Politecnico di MilanoMilanItaly
  13. 13.ELI-ALPS, ELI-Hu KftSzegedHungary

Personalised recommendations