Geometry and the Quantum



The ideas of noncommutative geometry are deeply rooted in both physics, with the predominant influence of the discovery of Quantum Mechanics, and in mathematics where it emerged from the great variety of examples of “noncommutative spaces” i.e. of geometric spaces which are best encoded algebraically by a noncommutative algebra.



I am grateful to Joseph Kouneiher and Jeremy Butterfield for their help in the elaboration of this paper.


  1. 1.
    L. Corry David Hilbert and the axiomatization of physics. Springer-Science + Business-Media B.V. (2004)Google Scholar
  2. 2.
    J. Kouneiher, J. Stachel, Einstein and Hilbert. In this volumeGoogle Scholar
  3. 3.
    M. Atiyah, Global theory of elliptic operators, in Proceedings of the International Conference on Functional Analysis and Related Topics (Tokyo, 1969) (University of Tokyo Press, Tokyo, 1970), p. 2130Google Scholar
  4. 4.
    A. Connes, \(C^*\)-algèbres et géométrie différentielle. C.R. Acad. Sci. Paris Sér. A-B 290, A599–A604 (1980)Google Scholar
  5. 5.
    A. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Chamseddine, A. Connes, Why the Standard Model? hep-th 0706.3688Google Scholar
  7. 7.
    A. Chamseddine, A. Connes, M. Marcolli, Gravity and the Standard Model with Neutrino Mixing, hep-th/0610241Google Scholar
  8. 8.
    A. Chamseddine, A. Connes, Resilience of the spectral standard model. JHEP 1209, 104 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Chamseddine, A. Connes, Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Fortschr. Phys. 58, 553 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Chamseddine, A. Connes, V. Mukhanov, Quanta of geometry: noncommutative aspects. Phys. Rev. Lett. 114, 091302 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Chamseddine, A. Connes, V. Mukhanov, Geometry and the quantum: basics. JHEP 12, 098 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Chamseddine, A. Connes, W.D. van Suijlekom, Beyond the spectral standard model: emergence of Pati-Salam unification. JHEP 11, 132 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Chamseddine, A. Connes, W.D. van Suijlekom, Grand unification in the spectral Pati-Salam models. JHEP 2511, 011 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Connes, Noncommutative geometry (Academic Press, 1994)Google Scholar
  15. 15.
    R.P. Woodard, How far are we from the quantum theory of gravity? Rep. Progr. Phys. 72(12), 126002 (2009), 42 pp. 81V17 (83C45)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Connes, Leçon inaugurale au Collège de France, 11 Janvier 1985.
  17. 17.
    B. Dundas, T. Goodwillie, R. McCarthy, The local structure of algebraic K-theory. Algebra and Applications, vol. 18. (Springer, London, 2013)CrossRefGoogle Scholar
  18. 18.
    A. Grothendieck, Récoltes et SemaillesGoogle Scholar
  19. 19.
    C. MacLarty, Grothendieck on Foundations for the Rebirth of Geometry. In this volumeGoogle Scholar
  20. 20.
    N. Gisin, A. Martin, B. Sanguinetti, H. Zbinden, Quantum random number generation on a mobile phone. Phys. Rev. X 4, 031056 (2014)Google Scholar
  21. 21.
    A. Pais, Inward Bound: Of Matter and Forces in the Physical World (Oxford University Press, Oxford, 1986)Google Scholar
  22. 22.
    M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73((4, part 2)), 1–23 (1966)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Milnor, Eigenvalues of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. U.S.A. 51, 542 (1964)MathSciNetCrossRefGoogle Scholar
  24. 24.
  25. 25.
    T. Hankins, Sir William Rowan Hamilton (Johns Hopkins University Press, Baltimore, MD, 1980)zbMATHGoogle Scholar
  26. 26.
    M. Spivak, Spaces satisfying Poincaré duality. Topology 6, 77–101 (1967)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Milnor, J. Stasheff, Characteristic Classes. Annals of Mathematics Studies, vol. 76 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974)Google Scholar
  28. 28.
    P.H. Siegel, Witt spaces: a geometric cycle theory for KO-homology at odd primes. Am. J. Math. 105(5), 1067–1105 (1983)CrossRefGoogle Scholar
  29. 29.
    I. Singer, Future extensions of index theory and elliptic operators. Prosp. Math. Ann. Math. Stud. 70, 171–185 (1971). (Princeton University Press)MathSciNetzbMATHGoogle Scholar
  30. 30.
    A. Connes, Noncommutative geometry and reality. J. Math. Phys. 36, 6194 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Chamseddine, A. Connes, W.D. van Suijlekom, Inner fluctuations in noncommutative geometry without the first order condition. J. Geom. Phys. 73, 222 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Chamseddine, A. Connes, A dress for SM the beggar, hep-th 0706.3690Google Scholar
  33. 33.
    A. Connes, H. Moscovici, The local index formula in noncommutative geometry. GAFA 5, 174–243 (1995)MathSciNetzbMATHGoogle Scholar
  34. 34.
    A. Carey, A. Rennie, F. Sukochev, D. Zanin, Universal measurability and the Hochschild class of the Chern character. J. Spectral Theory 6(1), 1–41 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Iori, R. Piergallini, \(4\)-manifolds as covers of the \(4\)-sphere branched over non-singular surfaces. Geom. Topology 6, 393–401 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    V. Poenaru, Sur la théorie des immersions. Topology 1, 81–100 (1962)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Chamseddine, A. Connes, Universal formula for noncommutative geometry actions: unification of gravity and the Standard Model. Phys. Rev. Lett. 77, 486804871 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MathematicsCollege de France, Institut des Hautes Etudes Scientifiques, OSU UniversityBures Sur YvetteFrance

Personalised recommendations