# Geometry and the Quantum

Chapter

First Online:

- 1 Citations
- 1.3k Downloads

## Abstract

The ideas of noncommutative geometry are deeply rooted in both physics, with the predominant influence of the discovery of Quantum Mechanics, and in mathematics where it emerged from the great variety of examples of “noncommutative spaces” i.e. of geometric spaces which are best encoded algebraically by a noncommutative algebra.

## Notes

### Acknowledgements

I am grateful to Joseph Kouneiher and Jeremy Butterfield for their help in the elaboration of this paper.

## References

- 1.L. Corry
*David Hilbert and the axiomatization of physics*. Springer-Science + Business-Media B.V. (2004)Google Scholar - 2.J. Kouneiher, J. Stachel,
*Einstein and Hilbert*. In this volumeGoogle Scholar - 3.M. Atiyah, Global theory of elliptic operators, in
*Proceedings of the International Conference on Functional Analysis and Related Topics (Tokyo, 1969)*(University of Tokyo Press, Tokyo, 1970), p. 2130Google Scholar - 4.A. Connes, \(C^*\)-
*algèbres et géométrie différentielle*. C.R. Acad. Sci. Paris Sér. A-B**290**, A599–A604 (1980)Google Scholar - 5.A. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys.
**186**, 731–750 (1997)MathSciNetCrossRefGoogle Scholar - 6.A. Chamseddine, A. Connes,
*Why the Standard Model?*hep-th 0706.3688Google Scholar - 7.A. Chamseddine, A. Connes, M. Marcolli,
*Gravity and the Standard Model with Neutrino Mixing*, hep-th/0610241Google Scholar - 8.A. Chamseddine, A. Connes, Resilience of the spectral standard model. JHEP
**1209**, 104 (2012)MathSciNetCrossRefGoogle Scholar - 9.A. Chamseddine, A. Connes, Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Fortschr. Phys.
**58**, 553 (2010)MathSciNetCrossRefGoogle Scholar - 10.A. Chamseddine, A. Connes, V. Mukhanov, Quanta of geometry: noncommutative aspects. Phys. Rev. Lett.
**114**, 091302 (2015)MathSciNetCrossRefGoogle Scholar - 11.A. Chamseddine, A. Connes, V. Mukhanov, Geometry and the quantum: basics. JHEP
**12**, 098 (2014)MathSciNetCrossRefGoogle Scholar - 12.A. Chamseddine, A. Connes, W.D. van Suijlekom, Beyond the spectral standard model: emergence of Pati-Salam unification. JHEP
**11**, 132 (2013)CrossRefGoogle Scholar - 13.A. Chamseddine, A. Connes, W.D. van Suijlekom, Grand unification in the spectral Pati-Salam models. JHEP
**2511**, 011 (2015)MathSciNetCrossRefGoogle Scholar - 14.A. Connes,
*Noncommutative geometry*(Academic Press, 1994)Google Scholar - 15.R.P. Woodard, How far are we from the quantum theory of gravity? Rep. Progr. Phys.
**72**(12), 126002 (2009), 42 pp. 81V17 (83C45)MathSciNetCrossRefGoogle Scholar - 16.A. Connes,
*Leçon inaugurale au Collège de France*, 11 Janvier 1985. http://www.alainconnes.org/docs/lecollege.pdf - 17.B. Dundas, T. Goodwillie, R. McCarthy,
*The local structure of algebraic K-theory*. Algebra and Applications, vol. 18. (Springer, London, 2013)CrossRefGoogle Scholar - 18.A. Grothendieck,
*Récoltes et Semailles*Google Scholar - 19.C. MacLarty,
*Grothendieck on Foundations for the Rebirth of Geometry*. In this volumeGoogle Scholar - 20.N. Gisin, A. Martin, B. Sanguinetti, H. Zbinden, Quantum random number generation on a mobile phone. Phys. Rev. X
**4**, 031056 (2014)Google Scholar - 21.A. Pais,
*Inward Bound: Of Matter and Forces in the Physical World*(Oxford University Press, Oxford, 1986)Google Scholar - 22.M. Kac, Can one hear the shape of a drum? Am. Math. Mon.
**73**((4, part 2)), 1–23 (1966)MathSciNetCrossRefGoogle Scholar - 23.J. Milnor, Eigenvalues of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. U.S.A.
**51**, 542 (1964)MathSciNetCrossRefGoogle Scholar - 24.
- 25.T. Hankins,
*Sir William Rowan Hamilton*(Johns Hopkins University Press, Baltimore, MD, 1980)zbMATHGoogle Scholar - 26.M. Spivak, Spaces satisfying Poincaré duality. Topology
**6**, 77–101 (1967)MathSciNetCrossRefGoogle Scholar - 27.J. Milnor, J. Stasheff,
*Characteristic Classes*. Annals of Mathematics Studies, vol. 76 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974)Google Scholar - 28.P.H. Siegel, Witt spaces: a geometric cycle theory for KO-homology at odd primes. Am. J. Math.
**105**(5), 1067–1105 (1983)CrossRefGoogle Scholar - 29.I. Singer, Future extensions of index theory and elliptic operators. Prosp. Math. Ann. Math. Stud.
**70**, 171–185 (1971). (Princeton University Press)MathSciNetzbMATHGoogle Scholar - 30.A. Connes, Noncommutative geometry and reality. J. Math. Phys.
**36**, 6194 (1998)MathSciNetCrossRefGoogle Scholar - 31.A. Chamseddine, A. Connes, W.D. van Suijlekom, Inner fluctuations in noncommutative geometry without the first order condition. J. Geom. Phys.
**73**, 222 (2013)MathSciNetCrossRefGoogle Scholar - 32.A. Chamseddine, A. Connes,
*A dress for SM the beggar*, hep-th 0706.3690Google Scholar - 33.A. Connes, H. Moscovici, The local index formula in noncommutative geometry. GAFA
**5**, 174–243 (1995)MathSciNetzbMATHGoogle Scholar - 34.A. Carey, A. Rennie, F. Sukochev, D. Zanin, Universal measurability and the Hochschild class of the Chern character. J. Spectral Theory
**6**(1), 1–41 (2016)MathSciNetCrossRefGoogle Scholar - 35.M. Iori, R. Piergallini, \(4\)-manifolds as covers of the \(4\)-sphere branched over non-singular surfaces. Geom. Topology
**6**, 393–401 (2002)MathSciNetCrossRefGoogle Scholar - 36.V. Poenaru, Sur la théorie des immersions. Topology
**1**, 81–100 (1962)MathSciNetCrossRefGoogle Scholar - 37.A. Chamseddine, A. Connes, Universal formula for noncommutative geometry actions: unification of gravity and the Standard Model. Phys. Rev. Lett.
**77**, 486804871 (1996)MathSciNetCrossRefGoogle Scholar

## Copyright information

© Springer International Publishing AG, part of Springer Nature 2018