Skip to main content

Atopic Dermatitis: Pathophysiology

  • Chapter
  • First Online:
Management of Atopic Dermatitis

Abstract

The pathophysiology of atopic dermatitis is complex and multifactorial, involving elements of barrier dysfunction, alterations in cell mediated immune responses, IgE mediated hypersensitivity, and environmental factors. Loss of function mutations in filaggrin have been implicated in severe atopic dermatitis due to a potential increase in trans-epidermal water loss, pH alterations, and dehydration. Other genetic changes have also been identified which may alter the skin’s barrier function, resulting in an atopic dermatitis phenotype. The imbalance of Th2 to Th1 cytokines observed in atopic dermatitis can create alterations in the cell mediated immune responses and can promote IgE mediated hypersensitivity, both of which appear to play a role in the development of atopic dermatitis. One must additionally take into consideration the role of the environment on the causation of atopic dermatitis and the impact of chemicals such as airborne formaldehyde, harsh detergents, fragrances, and preservatives. Use of harsh alkaline detergents in skin care products may also unfavorably alter the skin’s pH causing downstream changes in enzyme activity and triggering inflammation. Environmental pollutants can trigger responses from both the innate and adaptive immune pathways. This chapter will discuss the multifaceted etiology of atopic dermatitis which will help us to elucidate potential therapeutic targets. We will also review existing treatment options and their interaction with the complex inflammatory and molecular triggers of atopic dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol. 1995;75(6):429–33.

    CAS  PubMed  Google Scholar 

  2. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125(2):183–200.

    Article  CAS  PubMed  Google Scholar 

  3. Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol. 2009;9(5):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Braff MH, Di Nardo A, Gallo RL. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol. 2005;124(2):394–400.

    Article  CAS  PubMed  Google Scholar 

  5. Oren A, et al. In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol. 2003;74(2):180–2.

    Article  CAS  PubMed  Google Scholar 

  6. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280–91.

    Article  CAS  PubMed  Google Scholar 

  7. Palmer CN, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.

    Article  CAS  PubMed  Google Scholar 

  8. Fleckman P, Brumbaugh S. Absence of the granular layer and keratohyalin define a morphologically distinct subset of individuals with ichthyosis vulgaris. Exp Dermatol. 2002;11(4):327–36.

    Article  PubMed  Google Scholar 

  9. Scharschmidt TC, et al. Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol. 2009;124(3):496–506.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cork MJ, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129(8):1892–908.

    Article  CAS  PubMed  Google Scholar 

  11. Brattsand M, et al. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol. 2005;124(1):198–203.

    Article  CAS  PubMed  Google Scholar 

  12. Kato A, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol. 2003;148(4):665–9.

    Article  CAS  PubMed  Google Scholar 

  13. Walley AJ, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  14. Harding C, Rawlings A. Effects of natural moisturizing factor and lactic acid isomers on skin function. In: Dry skin and moisturizers. Boca Raton: CRC Press; 2005. p. 187–209.

    Google Scholar 

  15. Braun-Falco O, Korting HC. Normal pH value of human skin. Hautarzt. 1986;37(3):126–9.

    CAS  PubMed  Google Scholar 

  16. Rippke F, Schreiner V, Schwanitz HJ. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol. 2002;3(4):261–72.

    Article  PubMed  Google Scholar 

  17. Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the ‘acid mantle’. Exog Dermatol. 2002;1(4):163–75.

    Article  CAS  Google Scholar 

  18. Ekholm IE, Brattsand M, Egelrud T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol. 2000;114(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson DS. The acid-base balance of the skin. Br J Dermatol. 1951;63(8–9):283–95.

    Article  CAS  PubMed  Google Scholar 

  20. Lee H-J, Lee S-H. Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res. 2014;6(4):276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elias PM, et al. Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J Invest Dermatol. 2002;119(5):1128–36.

    Article  CAS  PubMed  Google Scholar 

  22. Sugawara T, et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci. 2013;70(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yuki T, et al. Impaired tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS One. 2016;11(9):e0161759.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yuki T, et al. Impaired tight junctions obstruct stratum corneum formation by altering polar lipid and profilaggrin processing. J Dermatol Sci. 2013;69(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  25. Gong JQ, et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br J Dermatol. 2006;155(4):680–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi T, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parsons JB, et al. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol. 2012;194(19):5294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato J, et al. Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis. J Invest Dermatol. 2002;119(4):900–4.

    Article  CAS  PubMed  Google Scholar 

  29. Amano H, et al. Psychological stress can trigger atopic dermatitis in NC/Nga mice: an inhibitory effect of corticotropin-releasing factor. Neuropsychopharmacology. 2007;33(3):566–73.

    Article  PubMed  Google Scholar 

  30. SuÁRez AL, et al. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol. 2012;92(1):7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perkin MR, et al. Association between domestic water hardness, chlorine, and atopic dermatitis risk in early life: A population-based cross-sectional study. J Allergy Clin Immunol. 2016;138(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  32. Kim J, et al. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis. Br J Dermatol. 2016;175(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  33. Kim K. Influences of environmental chemicals on atopic dermatitis. Toxicol Res. 2015;31(2):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Montnemery P, et al. Prevalence of self-reported eczema in relation to living environment, socio-economic status and respiratory symptoms assessed in a questionnaire study. BMC Dermatol. 2003;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Penard-Morand C, et al. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J. 2010;36(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann I, et al. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: results of the LARS study. Int J Hyg Environ Health. 2001;204(4):211–21.

    Article  CAS  PubMed  Google Scholar 

  37. Wang IJ, et al. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43(5):535–43.

    Article  CAS  PubMed  Google Scholar 

  38. Thyssen JP, et al. The epidemiology of contact allergy in the general population—prevalence and main findings. Contact Dermatitis. 2007;57(5):287–99.

    Article  PubMed  Google Scholar 

  39. Yoshihisa Y, Shimizu T. Metal allergy and systemic contact dermatitis: an overview. Dermatol Res Pract. 2012;2012:749561.

    PubMed  PubMed Central  Google Scholar 

  40. Borg L, et al. Nickel-induced cytokine production from mononuclear cells in nickel-sensitive individuals and controls. Cytokine profiles in nickel-sensitive individuals with nickel allergy-related hand eczema before and after nickel challenge. Arch Dermatol Res. 2000;292(6):285–91.

    Article  CAS  PubMed  Google Scholar 

  41. Minang JT, et al. Nickel, cobalt, chromium, palladium and gold induce a mixed Th1- and Th2-type cytokine response in vitro in subjects with contact allergy to the respective metals. Clin Exp Immunol. 2006;146(3):417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thyssen JP, McFadden JP, Kimber I. The multiple factors affecting the association between atopic dermatitis and contact sensitization. Allergy. 2014;69(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  43. Gfatter R, Hackl P, Braun F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology. 1997;195(3):258–62.

    Article  CAS  PubMed  Google Scholar 

  44. Wood LC, et al. Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis. J Invest Dermatol. 1996;106(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  45. Torma H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Invest Dermatol. 2008;128(5):1212–9.

    Article  PubMed  Google Scholar 

  46. Steinhoff M, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23(15):6176–80.

    CAS  PubMed  Google Scholar 

  47. Yim E, Baquerizo Nole KL, Tosti A. Contact dermatitis caused by preservatives. Dermatitis. 2014;25(5):215–31.

    Article  CAS  PubMed  Google Scholar 

  48. Wuthrich B. Food-induced cutaneous adverse reactions. Allergy. 1998;53(46 Suppl):131–5.

    Article  CAS  PubMed  Google Scholar 

  49. Hanifin JM. Critical evaluation of food and mite allergy in the management of atopic dermatitis. J Dermatol. 1997;24(8):495–503.

    Article  CAS  PubMed  Google Scholar 

  50. Bjorksten B. Genetic and environmental risk factors for the development of food allergy. Curr Opin Allergy Clin Immunol. 2005;5(3):249–53.

    Article  PubMed  Google Scholar 

  51. Sheu HM, et al. Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol. 1997;136(6):884–90.

    Article  CAS  PubMed  Google Scholar 

  52. Kao JS, et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol. 2003;120(3):456–64.

    Article  CAS  PubMed  Google Scholar 

  53. Yousef GM, et al. The KLK7 (PRSS6) gene, encoding for the stratum corneum chymotryptic enzyme is a new member of the human kallikrein gene family—genomic characterization, mapping, tissue expression and hormonal regulation. Gene. 2000;254(1–2):119–28.

    Article  CAS  PubMed  Google Scholar 

  54. Paternoster L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2011;44(2):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tamari M, Hirota T. Genome-wide association studies of atopic dermatitis. J Dermatol. 2014;41(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  56. Leung DY, et al. New insights into atopic dermatitis. J Clin Invest. 2004;113(5):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gittler JK, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Furue M, et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017;66(3):398–403.

    Article  PubMed  Google Scholar 

  59. Thepen T, et al. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an immunocytochemical study. J Allergy Clin Immunol. 1996;97(3):828–37.

    Article  CAS  PubMed  Google Scholar 

  60. Fujita H, et al. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci U S A. 2009;106(51):21795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Czarnowicki T, et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J Allergy Clin Immunol. 2015;136(4):941–951.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furue M, et al. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci. 2015;80(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  63. Howell MD, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakajima S, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–55.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kerschenlohr K, et al. Atopy patch test reactions show a rapid influx of inflammatory dendritic epidermal cells in patients with extrinsic atopic dermatitis and patients with intrinsic atopic dermatitis. J Allergy Clin Immunol. 2003;111(4):869–74.

    Article  PubMed  Google Scholar 

  66. Werfel T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336–49.

    Article  CAS  PubMed  Google Scholar 

  67. Schuller E, et al. Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2004;114(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  68. Poulsen LK, Hummelshoj L. Triggers of IgE class switching and allergy development. Ann Med. 2007;39(6):440–56.

    Article  CAS  PubMed  Google Scholar 

  69. Heratizadeh A, et al. The role of T-cell reactivity towards the autoantigen alpha-NAC in atopic dermatitis. Br J Dermatol. 2011;164(2):316–24.

    Article  CAS  PubMed  Google Scholar 

  70. Hradetzky S, et al. Cytokine effects induced by the human autoallergen alpha-NAC. J Invest Dermatol. 2014;134(6):1570–8.

    Article  CAS  PubMed  Google Scholar 

  71. Roesner LM, et al. Alpha-NAC-specific autoreactive CD8+ T cells in atopic dermatitis are of an effector memory type and secrete IL-4 and IFN-gamma. J Immunol. 2016;196(8):3245–52.

    Article  CAS  PubMed  Google Scholar 

  72. Rebane A, et al. Mechanisms of IFN-gamma-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129(5):1297–306.

    Article  CAS  PubMed  Google Scholar 

  73. Travers JB, et al. Infected atopic dermatitis lesions contain pharmacologic amounts of lipoteichoic acid. J Allergy Clin Immunol. 2010;125(1):146–52.e1–2.

    Article  CAS  PubMed  Google Scholar 

  74. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  75. Kraft M, Worm M. Dupilumab in the treatment of moderate-to-severe atopic dermatitis. Expert Rev Clin Immunol. 2017;13(4):301–10.

    Article  CAS  PubMed  Google Scholar 

  76. Wambre E, et al. Specific immunotherapy modifies allergen-specific CD4(+) T-cell responses in an epitope-dependent manner. J Allergy Clin Immunol. 2014;133(3):872–9.e7.

    Article  CAS  PubMed  Google Scholar 

  77. Tam H, et al. Specific allergen immunotherapy for the treatment of atopic eczema. Cochrane Database Syst Rev. 2016;2:Cd008774.

    PubMed  Google Scholar 

  78. Eichenfield LFM, et al. Assessing the new and emerging treatments for atopic dermatitis. Semin Cutan Med Surg. 2016;35(5 Suppl):S92–6.

    Article  Google Scholar 

  79. Hijnen D, et al. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol. 2013;133(4):973–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hennino A, et al. CD8+ T cells are recruited early to allergen exposure sites in atopy patch test reactions in human atopic dermatitis. J Allergy Clin Immunol. 2011;127(4):1064–7.

    Article  CAS  PubMed  Google Scholar 

  81. Barton M, Sidbury R. Advances in understanding and managing atopic dermatitis. F1000Res. 2015;4. doi:10.12688/f1000research.6972.1.

    Google Scholar 

  82. Volf EM, et al. A phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis. J Drugs Dermatol. 2012;11(3):341–6.

    CAS  PubMed  Google Scholar 

  83. Samrao A, et al. A pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol. 2012;148(8):890–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. El-Qutob D. Off-Label Uses of Omalizumab. Clin Rev Allergy Immunol. 2016;50(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  85. Hotze M, et al. Increased efficacy of omalizumab in atopic dermatitis patients with wild-type filaggrin status and higher serum levels of phosphatidylcholines. Allergy. 2014;69(1):132–5.

    Article  CAS  PubMed  Google Scholar 

  86. Peroni DG, et al. Correlation between serum 25-hydroxyvitamin D levels and severity of atopic dermatitis in children. Br J Dermatol. 2011;164(5):1078–82.

    Article  CAS  PubMed  Google Scholar 

  87. Back O, et al. Does vitamin D intake during infancy promote the development of atopic allergy? Acta Derm Venereol. 2009;89(1):28–32.

    Article  PubMed  Google Scholar 

  88. Chiu YE, et al. Serum 25-hydroxyvitamin D concentration does not correlate with atopic dermatitis severity. J Am Acad Dermatol. 2013;69(1):40–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gauvreau GM, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014 May 29;370(22):2102–10.

    Article  PubMed  Google Scholar 

  90. Roblin D, et al. Topical TrkA kinase inhibitor CT327 is an effective, novel therapy for the treatment of pruritus due to psoriasis: results from experimental studies, and efficacy and safety of CT327 in a phase 2b clinical trial in patients with psoriasis. Acta Derm Venereol. 2015;95(5):542–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle B. Tarbox M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

David Boothe, W., Tarbox, J.A., Tarbox, M.B. (2017). Atopic Dermatitis: Pathophysiology. In: Fortson, E., Feldman, S., Strowd, L. (eds) Management of Atopic Dermatitis. Advances in Experimental Medicine and Biology, vol 1027. Springer, Cham. https://doi.org/10.1007/978-3-319-64804-0_3

Download citation

Publish with us

Policies and ethics