Skip to main content

Emerging Molecular Approaches in the Analysis of Urine in Bladder Cancer Diagnosis

  • Chapter
  • First Online:
Precision Molecular Pathology of Bladder Cancer

Part of the book series: Molecular Pathology Library ((MPLB))

  • 958 Accesses

Abstract

Due to the potential for disease recurrence, patients diagnosed with urothelial carcinoma require long-term follow-up that is clinically invasive, time-consuming, and expensive. Periodic evaluation using cystoscopy to visually scan the bladder and to biopsy any suspicious areas is often coupled with cytologic analysis by voided urine or wash. However, cytology alone is not sensitive enough to be used in isolation and existing tests have a number of limitations. Urine cytology and existing urine biomarkers are covered in detail in Chap. 8. However, given the extensive molecular characterization of bladder cancer that is ongoing, there are a number of emerging molecular targets that are undergoing testing in urine specimens. In this chapter, we will review these novel targets and early preliminary data suggesting their utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamat AM, et al. ICUD-EAU international consultation on bladder cancer 2012: screening, diagnosis, and molecular markers. Eur Urol. 2013;63(1):4–15.

    Article  PubMed  Google Scholar 

  2. Cauberg ECC, et al. Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer. Urology. 2010;76(3):658–63.

    Article  PubMed  Google Scholar 

  3. Fradet Y, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol. 2007;178(1):68–73.

    Article  PubMed  Google Scholar 

  4. Reid MD, et al. Accuracy of grading of urothelial carcinoma on urine cytology: an analysis of interobserver and intraobserver agreement. Int J Clin Exp Pathol. 2012;5(9):882–91.

    PubMed  PubMed Central  Google Scholar 

  5. Rosenthal DL, Wojcik EM, Kurtycz DFI, editors. The paris system for reporting urine cytology. Cham: Springer; 2016.

    Google Scholar 

  6. Chou R, et al. Urinary biomarkers for diagnosis of bladder cancer a systematic review and meta-analysis. Ann Intern Med. 2015;163(12):922.

    Article  PubMed  Google Scholar 

  7. van Oers JMM, et al. A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin Cancer Res. 2005;11(21):7743–8.

    Article  PubMed  Google Scholar 

  8. Zuiverloon TCM, et al. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res. 2010;16(11):3011–8.

    Article  CAS  PubMed  Google Scholar 

  9. Silverberg DM. Urothelial carcinoma of the upper urinary tract diagnosed via FGFR3 mutation detection in urine: a case report. BMC Urol. 2012;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Couffignal C, et al. The diagnostic and prognostic performance of urinary FGFR3 mutation analysis in bladder cancer surveillance: a prospective multicenter study. Urology. 2015;86(6):1185–90.

    Article  PubMed  Google Scholar 

  11. Comperat E, et al. Gene expression study of Aurora-a reveals implication during bladder carcinogenesis and increasing values in invasive urothelial cancer. Urology. 2008;72(4):873–7.

    Article  PubMed  Google Scholar 

  12. Zhou N, et al. The investigational aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell-cycle progression in malignant bladder cancer cells in vitro and in vivo. Clin Cancer Res. 2013;19(7):1717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Martino M, et al. Aurora a kinase as a diagnostic urinary marker for urothelial bladder cancer. World J Urol. 2015;33(1):105–10.

    Article  PubMed  Google Scholar 

  14. Park HS, et al. Quantitation of aurora kinase A gene copy number in urine sediments and bladder cancer detection. J Natl Cancer Inst. 2008;100(19):1401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Myers-Irvin JM, Landsittel D, Getzenberg RH. Use of the novel marker BLCA-1 for the detection of bladder cancer. J Urol. 2005;174(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  16. Konety BR, et al. Detection of bladder cancer using a novel nuclear matrix protein, BLCA-4. Clin Cancer Res. 2000;6(7):2618–25.

    CAS  PubMed  Google Scholar 

  17. Sah NK, et al. Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006;244(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  18. Ku JH, et al. Urine survivin as a diagnostic biomarker for bladder cancer: a systematic review. BJU Int. 2012;110(5):630–6.

    Article  CAS  PubMed  Google Scholar 

  19. Shariat SF, et al. Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol. 2004;171(2):626–30.

    Article  CAS  PubMed  Google Scholar 

  20. Jeon C, et al. Prognostic role of survivin in bladder cancer: a systematic review and meta-analysis. PLoS One. 2013;8(10):e76719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hazzaa SM, Elashry OM, Afifi IK. Clusterin as a diagnostic and prognostic marker for transitional cell carcinoma of the bladder. Pathol Oncol Res. 2010;16(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shabayek MI, et al. Diagnostic evaluation of urinary angiogenin (ANG) and clusterin (CLU) as biomarker for bladder cancer. Pathol Oncol Res. 2014;20(4):859–66.

    Article  CAS  PubMed  Google Scholar 

  23. Jung S, et al. The role of immunohistochemistry in the diagnosis of flat urothelial lesions: a study using CK20, CK5/6, P53, Cd138, and Her2/Neu. Ann Diagn Pathol. 2014;18(1):27–32.

    Article  PubMed  Google Scholar 

  24. Harnden P, et al. Cytokeratin 20 as an objective marker of urothelial dysplasia. Br J Urol. 1996;78(6):870–5.

    Article  CAS  PubMed  Google Scholar 

  25. Huang YL, et al. Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for bladder cancer: a systematic review and meta-analysis. Tumor Biol. 2015;36(5):3137–45.

    Article  CAS  Google Scholar 

  26. Nisman B, et al. The follow-up of patients with non-muscle-invasive bladder cancer by urine cytology, abdominal ultrasound and urine CYFRA 21-1: a pilot study. Anticancer Res. 2009;29(10):4281–5.

    PubMed  Google Scholar 

  27. Eissa S, et al. Detection of telomerase in urine by 3 methods: evaluation of diagnostic accuracy for bladder cancer. J Urol. 2007;178(3):1068–72.

    Article  CAS  PubMed  Google Scholar 

  28. Issaq HJ, et al. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol. 2008;179(6):2422–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sanchini MA, et al. Relevance of urine telomerase in the diagnosis of bladder cancer. J Am Med Assoc. 2005;294(16):2052–6.

    Article  CAS  Google Scholar 

  30. Xu H, et al. The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther. 2015;8:3783–92.

    PubMed  PubMed Central  Google Scholar 

  31. Gao F, et al. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med. 2008;31(3):E106–16.

    Article  CAS  PubMed  Google Scholar 

  32. Hautmann S, et al. Immunocyt and the HA-HAase urine tests for the detection of bladder cancer: a side-by-side comparison. Eur Urol. 2004;46(4):466–71.

    Article  PubMed  Google Scholar 

  33. Lokeshwar VB, Block NL. HA-HAase urine test - a sensitive and specific method for detecting bladder cancer and evaluating its grade. Urol Clin N Am. 2000;27(1):53.

    Article  CAS  Google Scholar 

  34. Kramer MW, et al. Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer. 2011;117(6):1197–209.

    Article  CAS  PubMed  Google Scholar 

  35. Eissa S, et al. Urinary retinoic acid receptor-beta 2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer. Clin Biochem. 2012;45(6):402–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cancer Genome Atlas Research Network. TCGA, comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Article  Google Scholar 

  37. Ku JL, Jeon YK, Park JG. Methylation-specific PCR. Methods Mol Biol. 2011;791:23–32.

    Article  CAS  PubMed  Google Scholar 

  38. Chan MWY, et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res. 2002;8(2):464–70.

    CAS  PubMed  Google Scholar 

  39. Berrada N, et al. Epigenetic alterations of ademonatous polyposis coli (APC), retinoic acid receptor beta (RAR beta) and survivin genes in tumor tissues and voided urine of bladder cancer patients. Cell Mol Biol. 2012;58:1744–51.

    Google Scholar 

  40. Vinci S, et al. Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study. Urol Oncol. 2011;29(2):150–6.

    Article  CAS  PubMed  Google Scholar 

  41. Chihara Y, et al. Diagnostic markers of urothelial cancer based on DNA methylation analysis. BMC Cancer. 2013;13:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reinert T, et al. Diagnosis of bladder cancer recurrence based on urinary levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 hypermethylation. PLoS One. 2012;7(10):e46297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beukers W, et al. The use of molecular analyses in voided urine for the assessment of patients with hematuria. PLoS One. 2013;8(10):e77657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang YQ, et al. An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese. Oncotarget. 2016;7(3):2754–64.

    Article  PubMed  Google Scholar 

  45. Costa VL, et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res. 2010;16(23):5842–51.

    Article  CAS  PubMed  Google Scholar 

  46. Hoque MO, et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst. 2006;98(14):996–1004.

    Article  CAS  PubMed  Google Scholar 

  47. Scher MB, et al. Detecting DNA methylation of the BCL2, CDKN2A and NID2 genes in urine using a nested methylation specific polymerase chain reaction assay to predict bladder cancer. J Urol. 2012;188(6):2101–7.

    Article  CAS  PubMed  Google Scholar 

  48. Su SF, et al. A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res. 2014;20(7):1978–89.

    Article  CAS  PubMed  Google Scholar 

  49. Urquidi V, et al. Urinary mRNA biomarker panel for the detection of urothelial carcinoma. Oncotarget. 2016;7(25):38731–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ribal MJ, et al. Gene expression test for the non-invasive diagnosis of bladder cancer: a prospective, blinded, international and multicenter validation study. Eur J Cancer. 2016;54:131–8.

    Article  CAS  PubMed  Google Scholar 

  51. Bartoletti R, et al. Early diagnosis and monitoring of superficial transitional cell carcinoma by microsatellite analysis on urine sediment. Oncol Rep. 2005;13(3):531–7.

    CAS  PubMed  Google Scholar 

  52. Bartoletti R, et al. Multiplex polymerase chain reaction for microsatellite analysis of urine sediment cells: a rapid and inexpensive method for diagnosing and monitoring superficial transitional bladder cell carcinoma. J Urol. 2006;175(6):2032–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dal Canto M, et al. Molecular urinary sediment analysis in patients with transitional cell bladder carcinoma. Anticancer Res. 2003;23(6D):5095–100.

    CAS  PubMed  Google Scholar 

  54. Frigerio S, et al. Improved detection of bladder carcinoma cells in voided urine by standardized microsatellite analysis. Int J Cancer. 2007;121(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  55. van der Aa MNM, et al. Microsatellite analysis of voided-urine samples for surveillance of low-grade non-muscle-invasive urothelial carcinoma: feasibility and clinical utility in a prospective multicenter study (cost-effectiveness of follow-up of urinary bladder cancer trial CEFUB). Eur Urol. 2009;55(3):659–68.

    Article  PubMed  Google Scholar 

  56. Snowdon J, et al. A pilot study of urinary microRNA as a biomarker for urothelial cancer. Canadian Urol Assoc J. 2013;7(1-2):28–32.

    Article  Google Scholar 

  57. Miah S, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107(1):123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mengual L, et al. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int J Cancer. 2013;133(11):2631–41.

    CAS  PubMed  Google Scholar 

  59. Yamada Y, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 2011;102(3):522–9.

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu T, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol. 2013;63(6):1091–100.

    Article  CAS  PubMed  Google Scholar 

  61. Fan Y, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 2014;281(7):1750–8.

    Article  CAS  PubMed  Google Scholar 

  62. Eissa S, et al. Rapid detection of urinary long non-coding RNA urothelial carcinoma associated one using a PCR-free nanoparticle-based assay. Biomarkers. 2015;20(3):212–7.

    Article  CAS  PubMed  Google Scholar 

  63. Berrondo C, et al. Expression of the long non-coding RNA hotair correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One. 2016;11(1):e01467236.

    Article  Google Scholar 

  64. Theodorescu D, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006;7(3):230–40.

    Article  CAS  PubMed  Google Scholar 

  65. Schiffer E, et al. Prediction of muscle-invasive bladder cancer using urinary proteomics. Clin Cancer Res. 2009;15(15):4935–43.

    Article  CAS  PubMed  Google Scholar 

  66. Jin X, et al. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget. 2014;5(6):1635–45.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kinde I, et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 2013;73(24):7162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Birkenkamp-Demtroder K, et al. Genomic alterations in liquid biopsies from patients with bladder cancer. Eur Urol. 2016;70(1):75–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna E. Hansel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Solomon, J.P., Karim Kader, A., Hansel, D.E. (2018). Emerging Molecular Approaches in the Analysis of Urine in Bladder Cancer Diagnosis. In: Hansel, D., Lerner, S. (eds) Precision Molecular Pathology of Bladder Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-64769-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64769-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64767-8

  • Online ISBN: 978-3-319-64769-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics