Low-Survival Skeletal Elements Track Attrition, Not Carcass Transport Behavior in Quaternary Large Mammal Assemblages

Chapter

Abstract

Zooarchaeological analyses of carcass transport behavior require methodologies that control for the effects of density-mediated attrition on skeletal element abundances. Taphonomic observations suggest that based on differences in bone structure and density, large mammal skeletal elements can be divided into a high-survival subset of skeletal elements that more accurately reflects what was originally deposited, and a low-survival subset that does not. In this chapter we explore the applicability of this model of bone survivorship across 43 Quaternary large mammal assemblages from Africa (n = 33) and Eurasia (n = 10). We demonstrate that attrition explains a substantial degree of variation in low-survival element abundances, with nearly all low-survival elements affected. Because attrition severely overprints any potential signature of differential bone transport by humans, it follows that only the high-survival elements of large mammals are suitable for making behavioral inferences from skeletal element abundances. This supports predictions made from actualistic taphonomic observations.

Keywords

Bone density Density-mediated attrition Differential survivorship High-survival elements Skeletal part profiles Taphonomy 

Notes

Acknowledgments

The authors wish to thank Ali Murad Büyüm and Jennifer Gutierrez, who assisted in processing MNE counts for the BBC and PP13B assemblages. We thank Christina Giovas for inviting us to contribute this chapter and the editors and anonymous reviewers for their helpful feedback. JTF is supported by an Australian Research Council Discovery Early Career Research Fellowship.

References

  1. Abe, Y. (2005). Hunting and butchery patterns of the Evenki in Northern Transbaikalia, Russia. Unpublished Ph.D. dissertation, Stony Brook University, Stony Brook, New York.Google Scholar
  2. Assefa, Z. (2006). Faunal remains from Porc-Epic: Paleoecological and zooarchaeological investigations from a middle stone age site in southeastern Ethiopia. Journal of Human Evolution, 51, 50–75.CrossRefGoogle Scholar
  3. Bartram, L. E. (1993). Perspectives on skeletal part profiles and utility curves from Eastern Kalahari ethnoarchaeology. In J. Hudson (Ed.), From bones to behavior (pp. 115–137). Carbondale: Center for Archaeological Investigations at Southern Illinois University.Google Scholar
  4. Bartram, L. E., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua Ethnoarchaeology, the Die Kelders middle stone age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26, 9–29.Google Scholar
  5. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic.Google Scholar
  6. Binford, L. R., Mills, M. G. L., & Stone, N. M. (1988). Hyena scavenging behavior and its implications for interpretations of faunal assemblages from FLK22 (the Zinj Floor) at Olduvai Gorge. Journal of Anthropological Archaeology, 7, 99–135.CrossRefGoogle Scholar
  7. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.CrossRefGoogle Scholar
  8. Blumenschine, R. J., & Madrigal, T. C. (1993). Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. Journal of Archaeological Science, 20, 555–587.CrossRefGoogle Scholar
  9. Blumenschine, R. J., & Marean, C. W. (1993). A carnivore’s view of archaeological bone assemblages. In J. Hudson (Ed.), From bones to behavior (pp. 273–300). Carbondale: Center for Archaeological Investigations at Southern Illinois University.Google Scholar
  10. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  11. Bunn, H. T., & Kroll, E. M. (1986). Systematic butchery by Plio-Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology, 27, 431–452.CrossRefGoogle Scholar
  12. Bunn, H. T., Bartram, L. E., & Kroll, E. M. (1988). Variability in bone assemblage formation from Hadza hunting, scavenging, and carcass processing. Journal of Anthropological Archaeology, 7, 412–457.CrossRefGoogle Scholar
  13. Carlson, K. J., & Pickering, T. R. (2004). Shape-adjusted bone mineral density measurements in baboons: Other factors explain primate skeletal element representation at Swartkrans. Journal of Archaeological Science, 31, 577–583.CrossRefGoogle Scholar
  14. Cleghorn, N. (2006). A zooarchaeological perspective on the Middle to Upper Paleolithic transition at Mezmaiskaya Cave, the Northern Caucasus, Russia. Unpublished Ph.D. dissertation, Stony Brook University, Stony Brook, New York.Google Scholar
  15. Cleghorn, N., & Marean, C. W. (2004). Distinguishing selective transport and in situ attrition: A critical review of analytical approaches. Journal of Taphonomy, 2, 43–67.Google Scholar
  16. Cleghorn, N., & Marean, C. W. (2007). The destruction of skeletal elements by carnivores: The growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages. In T. R. Pickering, N. Toth, & K. Schick (Eds.), Breathing life into fossils: Taphonomic studies in honor of C.K. (Bob) Brain (pp. 37–66). Gosport: Stone Age Institute Press.Google Scholar
  17. Conard, N. J., Walker, S. J., & Kandel, A. W. (2008). How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography Palaeoclimatology Palaeoecology, 266, 236–245.CrossRefGoogle Scholar
  18. Faith, J. T. (2007a). Changes in reindeer body part representation at Grotte XVI, Dordogne, France. Journal of Archaeological Science, 34, 2003–2011.CrossRefGoogle Scholar
  19. Faith, J. T. (2007b). Sources of variation in carnivore tooth-mark frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 34, 1601–1609.CrossRefGoogle Scholar
  20. Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. Journal of Human Evolution, 65, 715–730.CrossRefGoogle Scholar
  21. Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34, 872–882.CrossRefGoogle Scholar
  22. Faith, J. T., Marean, C. W., & Behrensmeyer, A. K. (2007). Carnivore competition, bone destruction, and bone density. Journal of Archaeological Science, 34, 2025–2034.CrossRefGoogle Scholar
  23. Faith, J. T., Domínguez-Rodrigo, M., & Gordon, A. D. (2009). Long-distance carcass transport at Olduvai Gorge? A quantitative examination of Bed I skeletal element abundances. Journal of Human Evolution, 56, 247–256.CrossRefGoogle Scholar
  24. Gidna, A., Domínguez-Rodrigo, M., & Pickering, T. R. (2015). Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. Journal of Archaeological Science: Reports, 2, 302–309.CrossRefGoogle Scholar
  25. Grayson, D. K., & Delpech, F. (2003). Ungulates and the middle-to-upper Paleolithic transition at Grotte XVI (Dordogne, France). Journal of Archaeological Science, 30, 1633–1648.CrossRefGoogle Scholar
  26. Hill, A. (1989). Bone modification by modern spotted hyenas. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 169–178). Orono, ME: Center for the Study of the First Americans.Google Scholar
  27. Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology, 14, 99–108.CrossRefGoogle Scholar
  28. Lam, Y. M., Chen, X., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64, 343–362.CrossRefGoogle Scholar
  29. Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30, 1701–1708.CrossRefGoogle Scholar
  30. Lupo, K. D. (1995). Hadza bone assemblage and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14, 288–314.CrossRefGoogle Scholar
  31. Lupo, K. D. (2001). Archaeological skeletal part profiles and differential transport: An ethnoarchaeological example from Hadza bone assemblages. Journal of Anthropological Archaeology, 20, 361–378.CrossRefGoogle Scholar
  32. Lupo, K. D., & Schmitt, D. N. (1997). Experiments in bone boiling: Nutritional returns and archaeological reflections. Anthropozoologica, 25(26), 137–144.Google Scholar
  33. Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.CrossRefGoogle Scholar
  34. Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12, 221–236.CrossRefGoogle Scholar
  35. Lyman, R. L. (1993). Density-mediated attrition of bone assemblages: New insights. In J. Hudson (Ed.), From bones to behavior (pp. 324–341). Carbondale: Center for Archaeological Investigations at Southern Illinois University.Google Scholar
  36. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Marean, C. W. (1991). Measuring the postdepositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18, 677–694.CrossRefGoogle Scholar
  39. Marean, C. W., & Cleghorn, N. (2003). Large mammal skeletal element transport: Applying foraging theory in a complex taphonomic system. Journal of Taphonomy, 1, 15–42.Google Scholar
  40. Marean, C. W., & Frey, C. J. (1997). Animal bones from caves to cities: Reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.CrossRefGoogle Scholar
  41. Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave: Behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, S79–S113.CrossRefGoogle Scholar
  42. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56, 645–658.CrossRefGoogle Scholar
  43. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19, 101–121.CrossRefGoogle Scholar
  44. Marean, C. W., Abe, Y., Frey, C. J., & Randall, R. C. (2000). Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 layers 10 and 11 middle stone age larger mammal fauna. Journal of Human Evolution, 38, 197–233.CrossRefGoogle Scholar
  45. Marean, C. W., Abe, Y., Nilssen, P. J., & Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: A review and new image-analysis and GIS approach. American Antiquity, 66, 333–348.CrossRefGoogle Scholar
  46. Marean, C. W., Domínguez-Rodrigo, M., & Pickering, T. R. (2004). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique”. Journal of Taphonomy, 2, 69–98.Google Scholar
  47. Morin, E. (2004). Late pleistocene population interactions in western europe and modern human origins: New insights based on the faunal remains from Saint-Césaire, Southwestern France. Unpublished Ph.D. dissertation, University of Michigan, Ann Arbor.Google Scholar
  48. O’Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44, 113–161.CrossRefGoogle Scholar
  49. O’Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17, 301–316.CrossRefGoogle Scholar
  50. Pickering, T. R., Marean, C. W., & Domínguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: A response to “On in situ attrition and vertebrate body part profiles” (2002), by MC. Stiner. Journal of Archaeological Science, 30, 1469–1482.CrossRefGoogle Scholar
  51. Rogers, A. R. (2000). Analysis of bone counts by maximum likelihood. Journal of Archaeological Science, 27, 111–125.CrossRefGoogle Scholar
  52. Saladié, P., Huguet, R., Díez, C., Rodríguez-Hidalgo, A., Cáceres, I., Vallverdú, J., et al. (2011). Carcass transport decisions in Homo antecessor subsistence strategies. Journal of Human Evolution, 61, 425–446.CrossRefGoogle Scholar
  53. Schoville, B. J., & Otárola-Castillo, E. (2014). A model of hunter-gatherer skeletal element transport: The effect of prey body size, carriers, and distance. Journal of Human Evolution, 73, 1–14.CrossRefGoogle Scholar
  54. Stahl, P. W. (1999). Structural density of domesticated South American camelid skeletal elements and the archaeological investigation of prehistoric Andean Ch’arki. Journal of Archaeological Science, 26, 1347–1368.CrossRefGoogle Scholar
  55. Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29, 979–991.CrossRefGoogle Scholar
  56. Thompson, J. C. (2010). Taphonomic analysis of the middle stone age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa. Journal of Human Evolution, 59, 321–339.CrossRefGoogle Scholar
  57. Thompson, J. C., & Henshilwood, C. S. (2011). Taphonomic analysis of the middle stone age larger mammal faunal assemblage from Blombos Cave, southern Cape, South Africa. Journal of Human Evolution, 60, 746–767.CrossRefGoogle Scholar
  58. Thompson, J. C., & Lee-Gorishti, Y. (2007). Carnivore bone portion choice in modern experimental boiled bone assemblages. Journal of Taphonomy, 5, 121–135.Google Scholar
  59. Thompson, J. C., & Marean, C. W. (2009). Using image analysis to quantify relative degrees of density-mediated attrition in middle stone age archaeofaunas. Society for Archaeological Sciences Bulletin, 32(2), 18–23.Google Scholar
  60. Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21, 27–48.CrossRefGoogle Scholar
  61. White, T. E. (1952). Observations on the butchering technique of some aboriginal peoples: No. 1. American Antiquity, 4, 337–338.CrossRefGoogle Scholar
  62. Yellen, J. E. (1977). Cultural patterning in faunal remains: Evidence from the !Kung bushmen. In D. Ingersoll, J. E. Yellen, & W. Macdonald (Eds.), Experimental archeology (pp. 271–331). New York: Columbia University Press.Google Scholar
  63. Yeshurun, R., Bar-Oz, G., & Weinstein-Evron, M. (2007). Modern hunting behavior in the early Middle Paleolithic: Faunal remains from Misliya Cave, Mount Carmel, Israel. Journal of Human Evolution, 53, 656–677.CrossRefGoogle Scholar
  64. Yravedra, J., & Domínguez-Rodrigo, M. (2009). The shaft-based methodological approach to the quanitification of limb bones and its relevance to understanding hominid subsistence in the Pleistocene: Application to four Palaeolithic sites. Journal of Quaternary Science, 24, 85–96.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Natural History Museum of Utah and Department of AnthropologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of AnthropologyEmory UniversityAtlantaUSA

Personalised recommendations