Bone Taphonomy in Deep Urban Stratigraphy: Case Studies from York, United Kingdom



Many towns in Northern Europe have over a millennium of continuous occupation, often with high densities of structures and people. At these and other urban sites, including some on the American East Coast, many meters of archaeological deposits accumulate, organic degradation being ameliorated by an often damp temperate climate. Urban archaeology thus often yields copious quantities of animal bone debris, a valuable proxy record of husbandry, trade, consumption and disposal. However, continuous occupation means that people dug into the archaeological deposits of their predecessors’ deposits for construction, disposal, and hygiene purposes. Redeposition is widely recognized as an issue in urban zooarchaeology, and pre-depositional translocation of bones may be at least as significant, if less often acknowledged. In order to evaluate the samples of bones recovered from an urban site, we need to model and assess the origins of excavated assemblages and the principal taphonomic factors acting at different times and places, from the death of the animal and dismantling of the carcass, through in-ground diagenesis, to excavation sampling and curation. The Hungate site in York, UK, is used as an example of the contextual taphonomic analysis of urban assemblages, with further examples drawn from other sites in York and other historic towns across northern Europe.


Taphonomy Animal bones Urban York Butchering Resedimentation Diagenesis Sampling Curation 



CER’s research reported here was funded by York Archaeological Trust. We thank YAT colleagues, especially Peter Connelly, Jayne Rimmer and the Hungate project team, and we thank the reviewers of this paper.


  1. Aitchison, K. (2010). Grey literature, academic engagement, and preservation by understanding. Archaeologies, 6(2), 289–300.CrossRefGoogle Scholar
  2. Barley, M. W. (1977). European towns: Their archaeology and early history. Cambridge: Academic.Google Scholar
  3. Bond, J. M., & O’Connor, T. P. (1999). Bones from medieval deposits at 16–22 Coppergate and other sites in York. Council for British Archaeology: York.Google Scholar
  4. Broderick, L. (2014). Commerical zooarchaeology of the ‘modern’ era: A survey of attitudes and practices. Anthropozoologica, 49(1), 19–32.CrossRefGoogle Scholar
  5. Buckland, P. I., Eriksson, E., Linderholm, J., Viklund, K., Engelmark, R., Palm, F., et al. (2011). Integrating human dimensions of Arctic palaeoenvironmental science: SEAD–the strategic environmental archaeology database. Journal of Archaeological Science, 38(2), 345–351.Google Scholar
  6. Callmer, J. (2007). Urbanisation in Northern and Eastern Europe, ca. AD 700-1100. In J. Henning (Ed.), Post-Roman towns, trade and settlement in Europe and Byzantium (Vol. 1, pp. 233–270). Frankfurt: Walter De Gruyter.Google Scholar
  7. Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., et al. (2002). The survival of organic matter in bone: A review. Archaeometry, 44(3), 383–394.Google Scholar
  8. Dupras, T. L., & Schultz, J. J. (2013). Taphonomic bone staining and color changes in forensic contexts. In J. T. Pokines & S. A. Symes (Eds.), Manual of forensic taphonomy (pp. 315–340). Abingdon: Taylor and Francis.CrossRefGoogle Scholar
  9. Evans, D. (2010). A good riddance of bad rubbish? Scatological musings on rubbish disposal and the handling of ‘filth’ in medieval and early post-medieval towns. In K. De Groote, D. Tys, & M. Peters (Eds.), Exchanging medieval material culture: Studies on archaeology and history presented to Frans Verhaeghe (pp. 267–278). Brussels: Vlaams Institut voor het Onroerend Erfgoed.Google Scholar
  10. Hedges, R. E. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44(3), 319–328.CrossRefGoogle Scholar
  11. Hodges, R., & Hobley, B. (Eds.). (1988). The rebirth of towns in the west AD 700-1050. London: Council for British Archaeology.Google Scholar
  12. Hollund, H. I., Arts, N., Jans, M. M. E., & Kars, H. (2013). Are teeth better? Histological characterization of diagenesis in archaeological bone–tooth pairs and a discussion of the consequences for archaeometric sample selection and analyses. International Journal of Osteoarchaeology, 25(6), 901–911. doi:10.1002/oa.2376.CrossRefGoogle Scholar
  13. Holt, R., & Rosser, G. (2014). The medieval town in England 1200–1540. London: Routledge.Google Scholar
  14. Jans, M. M. (2008). Microbial bioerosion of bone–a review. In M. Wisshak & L. Tapanila (Eds.), Current developments in bioerosion (pp. 397–413). Heidelberg: Springer.Google Scholar
  15. Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31(1), 87–95.CrossRefGoogle Scholar
  16. Kenward, H. K., & Hall, A. R. (1995). Biological evidence from Anglo-Scandinavian deposits at 16–22 Coppergate. York: Council for British Archaeology.Google Scholar
  17. Koon, H. E. C., O’Connor, T. P., & Collins, M. J. (2010). Sorting the butchered from the boiled. Journal of Archaeological Science, 37(1), 62–69.CrossRefGoogle Scholar
  18. Lehmann, A., & Stahr, K. (2007). Nature and significance of anthropogenic urban soils. Journal of Soils and Sediments, 7(4), 247–260.CrossRefGoogle Scholar
  19. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Magnusson, R. J. (2013). Medieval urban environmental history. History Compass, 11, 189–200. doi:10.1111/hic3.12038.CrossRefGoogle Scholar
  21. Maltby, M. (2010). Feeding a Roman Town. Environmental evidence from excavations in Winchester, 1972–1985. Winchester: Winchester Museums.Google Scholar
  22. McGowan, G., & Prangnell, J. (2006). The significance of vivianite in archaeological settings. Geoarchaeology, 21(1), 93–111.CrossRefGoogle Scholar
  23. Müller, K., Chadefaux, C., Thomas, N., & Reiche, I. (2011). Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1), 39–51.CrossRefGoogle Scholar
  24. Natali, I., Tempesti, P., Carretti, E., Potenza, M., Sansoni, S., Baglioni, P., et al. (2014). Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir, 30(2), 660–668.Google Scholar
  25. Nielsen-Marsh, C. M., & Hedges, R. E. M. (1999). Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies. Archaeometry, 41(1), 165–174.CrossRefGoogle Scholar
  26. O’Connor, T. P. (1984a). Selected groups of bones from Skeldergate and Walmgate. Archaeology of York 15/1. London: Council for British Archaeology.Google Scholar
  27. O’Connor, T. P. (1984b). Bones from Aldwark, York. London: Ancient Monuments Laboratory Report 4391.Google Scholar
  28. O’Connor, T. P. (1993). Process and terminology in mammal carcass reduction. International Journal of Osteoarchaeology, 3(2), 63–67.CrossRefGoogle Scholar
  29. O’Connor, T. (2010). Livestock and deadstock in early medieval Europe from the North Sea to the Baltic. Environmental Archaeology, 15(1), 1–15.CrossRefGoogle Scholar
  30. O’Connor, S., Ali, E., Al-Sabah, S., Anwar, D., Bergström, E., Brown, K. A., et al. (2011). Exceptional preservation of a prehistoric human brain from Heslington, Yorkshire, UK. Journal of Archaeological Science, 38(7), 1641–1654.Google Scholar
  31. Rainsford C. (2013). Block H2: The faunal remains, 1550–1939. Unpublished archive report, York Archaeological Trust, York.Google Scholar
  32. Rainsford, C., O’Connor, T., & Connelly, P. (2014). The embarrassment of riches: Rationalizing faunal assemblages from large urban sites. International Journal of Osteoarchaeology, 26(2), 221–231. doi:10.1002/oa.2412.CrossRefGoogle Scholar
  33. Rosell, J., Blasco, R., Peris, J. F., Carbonell, E., Barkai, R., & Gopher, A. (2014). Recycling bones in the Middle Pleistocene: Some reflections from Gran Dolina TD10-1 (Spain), Bolomor Cave (Spain) and Qesem Cave (Israel). Quaternary International, 361, 297–312.CrossRefGoogle Scholar
  34. Sabine, E. L. (1937). City cleaning in mediaeval London. Speculum, 12(1), 19–43.CrossRefGoogle Scholar
  35. Smith, M. E. (2010). The archaeological study of neighborhoods and districts in ancient cities. Journal of Anthropological Archaeology, 29(2), 137–154.CrossRefGoogle Scholar
  36. Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., & Collins, M. J. (2007). Bone diagenesis in the European Holocene I: Patterns and mechanisms. Journal of Archaeological Science, 34(9), 1485–1493.CrossRefGoogle Scholar
  37. Sorg, M., Haglund, W. D., & Wren, J. A. (2012). Current research in forensic taphonomy. In D. C. Dirkmaat (Ed.), A companion in forensic anthropology (pp. 477–498). New York: Wiley.CrossRefGoogle Scholar
  38. Stahl, P. W. (2014). Vertebrate taphonomy in archaeological research. In C. Smith (Ed.), Encyclopedia of global archaeology (pp. 7617–7623). Heidelberg: Springer.CrossRefGoogle Scholar
  39. Święta-Musznicka, J., Latałowa, M., Badura, M., & Gołembnik, A. (2013). Combined pollen and macrofossil data as a source for reconstructing mosaic patterns of the early medieval urban habitats–a case study from Gdańsk, N. Poland. Journal of Archaeological Science, 40(1), 637–648.CrossRefGoogle Scholar
  40. Trueman, C. N., Privat, K., & Field, J. (2008). Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3), 160–167.CrossRefGoogle Scholar
  41. Vlachidis, A., Binding, C., May, K., & Tudhope, D. (2013). Automatic metadata generation in an archaeological digital library: Semantic annotation of grey literature. In A. Przepiórkowski, M. Piasecki, K. Jassem, & P. Fuglewicz (Eds.), Computational linguistics (pp. 187–202). Berlin: Springer.CrossRefGoogle Scholar
  42. White, L., & Booth, T. (2014). The origin of bacteria responsible for bioerosion to the internal bone microstructure: Results from experimentally-deposited pig carcasses. Forensic Science International, 239, 92–102.CrossRefGoogle Scholar
  43. Williams, A. N., & Smith, M. A. (2013). Austarch 3: A database of 14C and luminescence ages from archaeological sites in southern Australia. Australian Archaeology, 76, 102.Google Scholar
  44. Yeomans, L. (2007). The shifting use of animal carcasses in medieval and post-medieval London. In A. Pluskowski (Ed.), Breaking and shaping beastly bodies: Animals as material culture in the middle ages (pp. 98–115). Oxford: Oxbow.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Archaeological SciencesUniversity of BradfordBradfordUK
  2. 2.Department of ArchaeologyUniversity of YorkYorkUK

Personalised recommendations