Assessing California Mussel (Mytilus californianus) Size Changes Through Deep Time: A Methodological Case Study from San Miguel Island, California



Archaeologists working on California’s Channel Islands and in other regions around the world have used measurements of whole shellfish from ancient site deposits to track mean size changes through time. Size fluctuations have been linked to a variety of natural and anthropogenic impacts and employed as baselines to evaluate the health and structure of modern populations. Little regard has been paid, however, to the potential sampling biases introduced from a reliance on whole shell measurements from the surface or subsurface. We use a case study from San Miguel Island, California, to demonstrate that robust samples of whole shells from surface deposits produce statistically significant differences in mean sizes when compared to excavated deposits. Our methodological study also suggests that mean sizes of California mussels (Mytilus californianus) derived from whole surface shell measurements are inadequate for comparison to modern samples. Deep historical baselines for California mussels must include either whole or fragmented shells from subsurface deposits to generate precise reconstructions of mean prey sizes across time and space that may be used to establish a set of baselines and benchmarks for modern conservation.


Historical ecology Channel Islands Human impacts 



We are grateful to Jon Erlandson, Torben Rick, and René Vellanoweth for their many years of tireless work to compile a deep historical record of California mussel (and other shellfish) size changes through time on the Channel Islands. Their foundational research was instrumental to our methodological inquiries. Thanks to Sopagna Eap Braje for assisting with statistical analyses and to SDSU undergraduate students Kellie Kandybowicz and Chyna Lee for help with laboratory analysis. Our work has been graciously supported by Channel Islands National Park and San Diego State University. Special thanks to Christina Giovas and Michelle LeFebvre for inviting us to contribute to this volume and for constructive feedback and support during the review and production process. Finally, we are grateful to two anonymous reviewers and the editorial team at Springer for their help in the review, revision, and production of our chapter.


  1. Allen, J. (1997). The impact of Pleistocene hunters and gatherers on the ecosystems of Australia and Melanesia: In tune with nature? In P. V. Kirch & T. L. Hunt (Eds.), Historical ecology in the Pacific Islands: Prehistoric environmental and landscape change (pp. 22–38). New Haven: Yale University Press.Google Scholar
  2. Allen, M. A. (2012). Molluscan foraging efficiency and patterns of mobility amongst foraging agriculturalists: A case study from northern New Zealand. Journal of Archaeological Science, 39(2), 295–307.CrossRefGoogle Scholar
  3. Anderson, A. J. (2001). No meat on that beautiful shore: The prehistoric abandonment of subtropical Polynesian Islands. International Journal of Osteoarchaeology, 11(1–2), 14–23.CrossRefGoogle Scholar
  4. Arnold, J. E. (1992). Complex hunter-gatherer-fishers of prehistoric California: Chiefs, specialists, and maritime adaptations of the Channel Islands. American Antiquity, 57(1), 60–84.CrossRefGoogle Scholar
  5. Arnold, J. E. (1995). Transportation innovation and social complexity among maritime hunter-gatherer societies. American Anthropologist, 97(4), 733–747.CrossRefGoogle Scholar
  6. Arnold, J. E. (Ed.). (2001). The origins of a Pacific Coast chiefdom: The Chumash of the Channel Islands. Salt Lake City: University of Utah Press.Google Scholar
  7. Bailey, G., Barrett, J., Craig, O., & Milner, N. (2008). Historical ecology of the North Sea Basin: An archaeological perspective and some problems of methodology. In T. C. Rick & J. M. Erlandson (Eds.), Human impacts on ancient marine ecosystems: A global perspective (pp. 215–242). Berkeley: University of California Press.Google Scholar
  8. Bell, A. M. (2009). On the validity of archaeological shellfish metrics in coastal California. Unpublished M.A. thesis, California State University, Chico.Google Scholar
  9. Bernard, J. (2004). Status and the swordfish: The origins of large-species fishing among the Chumash. In J. E. Arnold (Ed.), Foundations of Chumash complexity (pp. 25–51). Perspectives in California Archaeology (Vol. 7). Los Angeles: Cotsen Institute of Archaeology, University of California.Google Scholar
  10. Braje, T. J. (2010). Modern oceans, ancient sites: Archaeology and marine conservation on San Miguel Island, California. Salt Lake City: University of Utah Press.Google Scholar
  11. Braje, T. J., & Rick, T. C. (2013). From forest fires to fisheries management: Anthropology, conservation biology, and historical ecology. Evolutionary Anthropology, 22(6), 303–311.CrossRefGoogle Scholar
  12. Braje, T. J., Kennett, D. J., Erlandson, J. M., & Culleton, B. J. (2007). Human impacts on nearshore shellfish taxa: A 7,000 year record from Santa Rosa Island, California. American Antiquity, 72(4), 735–756.CrossRefGoogle Scholar
  13. Braje, T. J., Rick, T. C., Willis, L. M., & Erlandson, J. M. (2011). Shellfish and the Chumash: Marine invertebrates and complex hunter-gatherers on late Holocene San Miguel Island, California. North American Archaeologist, 32(3), 267–290.CrossRefGoogle Scholar
  14. Braje, T. J., Rick, T. C., & Erlandson, J. M. (2012). A trans-Holocene historical ecological record of shellfish harvesting on California’s Northern Channel Islands. Quaternary International, 264, 109–120.CrossRefGoogle Scholar
  15. Broughton, J. M. (1994). Declines in mammalian foraging efficiency during the late Holocene, San Francisco Bay, California. Journal of Anthropological Archaeology, 13, 371–401.CrossRefGoogle Scholar
  16. Broughton, J. M. (1999). Resource depression and intensification during the late Holocene, San Francisco Bay: Evidence from the Emeryville shellmound vertebrate fauna. University of California Anthropology Record 32.Google Scholar
  17. Campbell, B., & Braje, T. J. (2015). Estimating California mussel (Mytilus californianus) size from hinge fragments: A methodological application in historical ecology. Journal of Archaeological Science, 58, 167–174.CrossRefGoogle Scholar
  18. Claassen, C. (1998). Shells. Cambridge: Cambridge University Press.Google Scholar
  19. Coe, W. R., & Fox, D. L. (1942). Biology of the California sea-mussel (Mytilus californianus): Influence of temperature, food supply, sex and age on the rate of growth. Journal of Experimental Zoology, 90(1), 1–30.CrossRefGoogle Scholar
  20. Cronk, B. C. (2008). How to use SPSS (5th ed.). Glendale: Pyrczak.Google Scholar
  21. Dayton, P. K., Tegner, M. J., Edwards, P. B., & Riser, K. L. (1998). Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications, 8(2), 309–322.CrossRefGoogle Scholar
  22. de Boer, W. F., Pereira, T., & Guissamulo, A. (2000). Comparing recent and abandoned shell middens to detect the impact of human exploitation on the intertidal ecosystem. Aquatic Ecology, 34, 287–297.CrossRefGoogle Scholar
  23. Erlandson, J. M. (2001). The archaeology of aquatic adaptations: Paradigms for a new millennium. Journal of Archaeological Research, 9(4), 287–350.CrossRefGoogle Scholar
  24. Erlandson, J. M., Rick, T. C., & Vellanoweth, R. L. (2004). Human impacts on ancient environments: A case study from California’s Northern Channel Islands. In S. M. Fitzpatrick (Ed.), Voyages of discovery: The archaeology of Islands (pp. 51–84). Westport: Praeger.Google Scholar
  25. Erlandson, J. M., Rick, T. C., Braje, T. J., Steinberg, A., & Vellanoweth, R. L. (2008). Human impacts on ancient shellfish: A 10,000 year record from San Miguel Island, California. Journal of Archaeological Science, 35(8), 2144–2152.CrossRefGoogle Scholar
  26. Erlandson, J. M., Braje, T. J., Rick, T. C., Jew, N. P., Kennett, D. J., Dwyer, N., Ainis, A. F., Vellanoweth, R. L., & Watts, J. (2011). 10,000 years of human predation and size changes in the owl limpet (Lottia gigantea) on San Miguel Island, California. Journal of Archaeological Science, 38(5), 1127–1134.Google Scholar
  27. Faulkner, P. (2009). Focused, intense and long-term: Evidence for granular ark (Anadara granosa) exploitation from late Holocene shell mounds of Blue Mud Bay, Northern Australia. Journal of Archaeological Science, 36(3), 821–834.CrossRefGoogle Scholar
  28. Ford, P. J. (1989). Molluscan assemblages from archaeological deposits. Geoarchaeology, 4(2), 157–173.CrossRefGoogle Scholar
  29. Gamble, L. H. (2002). Archaeological evidence for the origin of the plank canoe in North America. American Antiquity, 67(2), 301–315.CrossRefGoogle Scholar
  30. Giovas, C. M., Fitzpatrick, S. M., Clark, M., & Abed, M. (2010). Evidence for size increase in an exploited mollusc: Humped conch (Strombus gibberulus) at Chelechol ra Orrak, Palau from ca. 3000-0 BP. Journal of Archaeological Science, 37(11), 2788–2798.CrossRefGoogle Scholar
  31. Giovas, C. M., Clark, M., Fitzpatrick, S. M., & Stone, J. (2013). Intensifying collection and size increase of the tessellated nerite snail (Nerita tessellata) at the Coconut Walk site, Nevis, northern Lesser Antilles, AD 890-1440. Journal of Archaeological Science, 40(11), 4024–4038.Google Scholar
  32. Graesch, A. P. (2004). Specialized bead making among island Chumash households. In J. E. Arnold (Ed.), Foundations of Chumash complexity (pp. 133–171). Salt Lake City: University of Utah Press.Google Scholar
  33. Grayson, D. K. (2001). The archaeological record of human impact on animal populations. Journal of World Prehistory, 15, 1–68.CrossRefGoogle Scholar
  34. Harley, C. D. G. (2011). Climate change, keystone predation, and biodiversity loss. Science, 334(6059), 1124–1127.Google Scholar
  35. Hutchings, J. A., & Ferguson, M. (2000). Temporal changes in harvesting dynamics of Canadian inshore fisheries for northern Atlantic cod, Gadus morhua. Canadian Journal of Fisheries and Aquatic Sciences, 57, 805–814.CrossRefGoogle Scholar
  36. Jackson, J. B. C., Kirby, M. X., Berger, W., Bjorndal, K., Botsford, L., Bourque, B., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–638.CrossRefGoogle Scholar
  37. Jackson, J. B. C., Alexander, K. E., & Sala, E. (Eds.). (2011). Shifting baselines: The past and the future of ocean fisheries. Washington, DC: Island Press.Google Scholar
  38. Jazwa, C. S., Kennett, D. J., & Hanson, D. (2012). Late Holocene subsistence change and marine productivity on western Santa Rosa Island, Alta California. California Archaeology, 4(1), 69–98.CrossRefGoogle Scholar
  39. Jeradino, A., Branch, G. M., & Navarro, R. (2008). Human impact on precolonial west coast marine environments of South Africa. In T. C. Rick & J. M. Erlandson (Eds.), Human impacts on ancient marine ecosystems: A global perspective (pp. 279–296). Berkeley: University of California Press.Google Scholar
  40. Jerardino, A. (1997). Changes in shellfish species composition and mean shell size from a late Holocene record of the west coast of southern Africa. Journal of Archaeological Science, 24(11), 1031–1044.CrossRefGoogle Scholar
  41. Jerardino, A., & Marean, C. W. (2010). Shellfish gathering, marine paleoecology and modern human behavior: Perspectives from cave PP13B, Pinnacle Point, South Africa. Journal of Human Evolution, 59(3–4), 412–424.CrossRefGoogle Scholar
  42. Johnson, R. A., & Bhattacharyya, G. K. (1992). Statistics: Principles and methods (2nd ed.). New York: Wiley.Google Scholar
  43. Johnson, J. R., Stafford, T. W., Jr., Ajie, H. O., & Morris, D. P. (2002). Arlington Springs revisited. In D. Browne, K. Mitchell, & H. Chaney (Eds.), Proceedings of the fifth California Islands symposium (pp. 541–545). Santa Barbara: Santa Barbara Museum of Natural History.Google Scholar
  44. Jones, T. L., & Richman, J. R. (1995). On mussels: Mytilus californianus as a prehistoric resource. North American Archaeologist, 16(1), 33–58.CrossRefGoogle Scholar
  45. Kennett, D. J. (2005). The Island Chumash: Behavioral ecology of a maritime society. Berkeley: University of California Press.Google Scholar
  46. Kirch, P. V. (2004). Oceanic islands: Microcosms of “global change.”. In C. L. Redman, S. R. James, P. R. Fish, & J. D. Rogers (Eds.), The archaeology of global change: The impact of humans on their environment (pp. 13–27). Washington, DC: Smithsonian Books.Google Scholar
  47. Kirch, P. V., & Hunt, T. L. (Eds.). (1997). Historical ecology in the Pacific Islands: Prehistoric environmental and landscape change. New Haven: Yale University Press.Google Scholar
  48. Kittinger, J. N., Van Houtan, K. S., McClenachan, L., & Lawrence, A. L. (2013). Using historical data to access the biogeography of population recovery. Ecography, 36(8), 868–872.CrossRefGoogle Scholar
  49. Kittinger, J. N., McClenachan, L., Gedan, K. B., & Blight, L. K. (2014). Marine historical ecology in conservation: Applying the past to manage for the future. Berkeley: University of California Press.CrossRefGoogle Scholar
  50. Kohler, T. A. (2004). Population and resources in prehistory. In C. L. Redman, S. R. James, P. R. Fish, & J. D. Rogers (Eds.), The archaeology of global change: The impact of humans on their environment (pp. 257–270). Washington, DC: Smithsonian Books.Google Scholar
  51. Kurlansky, M. (1997). Cod: A biography of the fish that changed the world. New York: Penguin.Google Scholar
  52. Lasiak, T. (1991). The susceptibility and/or resilience of rocky littoral molluscs to stock depletion by indigenous coastal people of Transkei, Southern Africa. Biological Conservation, 56(3), 245–264.CrossRefGoogle Scholar
  53. Lotze, H. K., & McClenachan, L. (2014). Marine historical ecology: Informing the future by learning from the past. In M. D. Bertness, B. R. Silliman, J. F. Bruno, & J. J. Stachowicz (Eds.), Marine community ecology and conservation (pp. 165–200). Sunderland: Sinauer Associates.Google Scholar
  54. Lyman, R. L. (2006). Paleozoology in the service of conservation biology. Evolutionary Anthropology, 15(1), 11–19.CrossRefGoogle Scholar
  55. Mannino, M. A., & Thomas, K. D. (2001). Intensive Mesolithic exploitation of coastal resources? Evidence from a shell deposit on the Isle of Portland (southern England) for the impact of human foraging on populations of intertidal rocky shore molluscs. Journal of Archaeological Science, 28(10), 1101–1114.Google Scholar
  56. Mannino, M. A., & Thomas, K. D. (2002). Depletion of a resource? The impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeology, 33(3), 452–474.CrossRefGoogle Scholar
  57. Marean, C. W., Bar-Matthews, M., Bernatches, J., Fisher, E., Goldberg, P., Herries, A. I. R., et al. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.CrossRefGoogle Scholar
  58. Martin, P. S. (1984). Prehistoric overkill: The global model. In P. S. Marin & R. G. Klein (Eds.), Quaternary extinctions: A prehistoric revolution (pp. 354–403). Tucson: University of Arizona Press.Google Scholar
  59. McClenachan, L., Cooper, A. B., Carpenter, K. E., & Dulvy, N. K. (2012). Extinction risk and bottlenecks in the conservation of charismatic marine species. Conservation Letters, 5(1), 73–80.CrossRefGoogle Scholar
  60. McKechnie, I., Singh, G. G., Braje, T. J., & Campbell, B. (2015). Measuring Mytilus californianus: An addendum to Campbell and Braje (2015) and Singh and McKechnie (2015) including commentary and an integration of data. Journal of Archaeological Science, 58, 184–186.CrossRefGoogle Scholar
  61. Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A., & Yamada, S. B. (1994). The keystone species concept: Variation in interaction strength in a rocky intertidal habitat. Ecologial Monographs, 64(3), 249–286.CrossRefGoogle Scholar
  62. Menge, B. A., Chan, F., & Lubchenco, J. (2008). Response of a rocky intertidal ecosystem engineer and community dominant to climate change. Ecological Letters, 11(2), 151–162.Google Scholar
  63. Milner, N., Barrett, J., & Welsh, J. (2007). Marine resource intensification in Viking Age Europe: The molluscan evidence from Quoygrew, Orkney. Journal of Archaeological Science, 34(9), 1461–1472.CrossRefGoogle Scholar
  64. Morrison, A. E., & Cochrane, E. E. (2008). Investigating shellfish deposition and landscape history at the Natia Beach site, Fiji. Journal of Archaeological Science, 35(8), 2387–2399.CrossRefGoogle Scholar
  65. Morrison, A. E., & Hunt, T. L. (2007). Human impacts to the near-shore environment: A case study from Nualolo Kai, Kauai. Pacific Science, 61(3), 325–345.CrossRefGoogle Scholar
  66. Muckle, R. J. (1985). Archaeological considerations of bivalve shell taphonomy. Unpublished MA thesis. Burnaby, Department of Anthropology, Simon Fraser University, British Columbia.Google Scholar
  67. Nielson, A. E. (1991). Trampling the archaeological record: An experimental study. American Antiquity, 56(3), 483–503.CrossRefGoogle Scholar
  68. Noli, D., & Avery, G. (1988). Protein poisoning and coastal subsistence. Journal of Archaeological Science, 15(4), 395–401.CrossRefGoogle Scholar
  69. Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution, 10(10), 430.CrossRefGoogle Scholar
  70. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.CrossRefGoogle Scholar
  71. Raab, L. M. (1992). An optimal foraging analysis of prehistoric shellfish collecting on San Clemente Island, California. Journal of Ethnobiology, 12(1), 63–80.Google Scholar
  72. Redman, C. L. (1999). Human impacts on ancient environments. Tucson: University of Arizona Press.Google Scholar
  73. Redman, C. L., James, S. R., Fish, P. R., & Rogers, J. D. (2004). The archaeology of global change: The impact of humans on their environment. Washington, DC: Smithsonian Books.Google Scholar
  74. Richardson, C. A. (2001). Molluscs as archives of environmental change. Oceanography and Marine Biology: An Annual Review, 39, 103–164.Google Scholar
  75. Rick, T. C. (2007). The archaeology and historical ecology of late Holocene San Miguel Island. Perspectives in California archaeology (Vol. 8). Los Angeles: Cotsen Institute of Archaeology, University of California.Google Scholar
  76. Rick, T. C., & Erlandson, J. M. (Eds.). (2008). Human impacts in ancient marine ecosystems: A global perspective. Berkeley: University of California.Google Scholar
  77. Rick, T. C., & Lockwood, R. (2013). Integrating paleobiology, archaeology, and history to inform biological conservation. Conservation Biology, 27(1), 45–54.CrossRefGoogle Scholar
  78. Rick, T. C., Erlandson, J. M., Vellanoweth, R. L., & Braje, T. J. (2005). From Pleistocene mariners to complex hunter-gatherers: The archaeology of the California Channel Islands. Journal of World Prehistory, 19, 169–228.CrossRefGoogle Scholar
  79. Sanger, D. (1981). Unscrambling messages in the midden. Archaeology of Eastern North America, 9, 37–42.Google Scholar
  80. Schoenherr, A. A., Feldmeth, C. R., & Emerson, M. J. (1999). Natural history of the islands of California. Berkeley: University of California Press.Google Scholar
  81. Sharp, J. T. (2000). Shellfish analysis from the Punta Arena Site, a Middle Holocene red abalone midden on Santa Cruz Island, California. Unpublished master’s thesis. Rohnert Park, Sonoma State University, California.Google Scholar
  82. Singh, G. G., & McKechnie, I. (2015). Making the most of fragments: A method for estimating shell length from fragmentary mussels (Mytilus californianus and Mytilus trossulus) on the Pacific Coast of North America. Journal of Archaeological Science, 58, 175–183.CrossRefGoogle Scholar
  83. Smith, J. R., Fong, P., & Ambrose, R. F. (2006). Dramatic declines in mussel bed community diversity: Response to climate change? Ecology, 87(5), 1153–1161.CrossRefGoogle Scholar
  84. Sokal, R. R., & Rohlf, E. J. (1981). Biometry. San Francisco: Freeman Press.Google Scholar
  85. Stein, J. K. (1992). Deciphering a shell midden. San Diego: Academic.Google Scholar
  86. Suchanek, T. H. (1981). The role of disturbance in the evolution of life history strategies in the intertidal mussels Mytilus edulis and Mytilus californianus. Oecologia, 50, 143–152.CrossRefGoogle Scholar
  87. Swadling, P. (1976). Changes induced by exploitation in prehistoric shellfish populations. Man, 10(3), 156–162.Google Scholar
  88. Whitaker, A. R. (2008). Incipient aquaculture in prehistoric California? Long-term productivity and sustainability vs. immediate returns for the harvest of marine invertebrates. Journal of Archaeological Science, 35(4), 1114–1123.CrossRefGoogle Scholar
  89. White, G. (1989). A report of archaeological investigations at eleven Native American coastal sites, MacKerricher State Park, Mendocino County, California. Sacramento, CA: California State Parks.Google Scholar
  90. Wolverton, S., & Lyman, R. L. (Eds.). (2012). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.Google Scholar
  91. Wolverton, S., Randklev, C. R., & Kennedy, J. H. (2010). A conceptual model for freshwater mussel (family: Unionidae) remain preservation in zooarchaeological assemblages. Journal of Archaeological Science, 37(1), 164–173.CrossRefGoogle Scholar
  92. Wolverton, S., Randklev, C. R., & Barker, A. (2011). Ethnobiology as a bridge between science and ethics: An applied zoological perspective. In E. N. Anderson, D. M. Pearsall, E. S. Hunn, & N. Turner (Eds.), Ethnobiology (pp. 115–132). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of AnthropologySan Diego State UniversitySan DiegoUSA
  2. 2.Rincon ConsultantsInc.CarlsbadUSA

Personalised recommendations