Ancient DNA in Zooarchaeology: New Methods, New Questions and Settling Old Debates in Pacific Commensal Studies

  • Elizabeth Matisoo-Smith


New methods in DNA analyses, particularly the development of Next Generation Sequencing, have opened up new opportunities for aDNA studies in general and increased the possibilities for zooarchaeological studies; however, regardless of the data that can be obtained from faunal samples, archaeological context and geographic sampling are still critical issues. Using examples from Pacific commensal studies this paper will discuss how the application of these new methods and better sampling could not only tease out complex histories of settlement and interactions, but address new questions regarding human and animal interactions in the past and solve some of the major debates in Pacific prehistory.


Oceania Polynesia Next Generation Sequencing (NGS) Rattus exulans Dogs Pigs Chickens 



I would like to thank Christina Giovas and Aaron Poteate for organizing the SAA session in which this paper was presented and for encouraging continued discussion and dialogue.


  1. Allentoft, M. E., Heller, R., Oskam, C. L., Lorenzen, E. D., Hale, M. L., Gilbert, M. T. P., et al. (2014). Extinct New Zealand megafauna were not in decline before human colonization. Proceedings of the National Academy of Sciences, USA, 111(13), 4922–4927.CrossRefGoogle Scholar
  2. Austin, J. J., Smith, A. B., & Thomas, R. H. (1997). Palaeontology in a molecular world: The search for authentic ancient DNA. Trends in Ecology & Evolution, 12(8), 303–306.CrossRefGoogle Scholar
  3. Beavan, N. (2014). No evidence for sample contamination or diet offset for pre-Columbian chicken dates from El Arenal. Proceedings of the National Academy of Sciences, USA, 111(35), E3582.CrossRefGoogle Scholar
  4. Benton, M., Macartney-Coxson, D., Eccles, D., Griffiths, L., Chambers, G., & Lea, R. (2012). Complete mitochondrial genome sequencing reveals novel haplotypes in a polynesian population. PLOS ONE, 7(4), e35026. Google Scholar
  5. Best, E. (1899). The art of the whare pora: Notes on the clothing of the ancient Maori, their knowledge of preparing, dyeing and weaving various fibres, together with some account of dress and ornaments, and the ancient ceremonies and superstitions of the whare pora. Transactions and Proceedings of the Royal Society of New Zealand, 31, 625–658.Google Scholar
  6. Boessenkool, S., Austin, J. J., Worthy, T. H., Scofield, P., Cooper, A., Seddon, P. J., et al. (2009). Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 815–821.CrossRefGoogle Scholar
  7. Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, et al. (2009). Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325(5938), 318–321.CrossRefGoogle Scholar
  8. Bryant, D. (2014). Statistical flaws undermine pre-Columbian chicken debate. Proceedings of the National Academy of Sciences, USA, 111(35), E3584.CrossRefGoogle Scholar
  9. Cano, R., & Borucki, M. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268(5213), 1060–1064.CrossRefGoogle Scholar
  10. Clark, G. R. (1997). Anthropogenic factors and prehistoric dog morphology: A case study from Polynesia. Archaeology in Oceania, 32(1), 124–130.CrossRefGoogle Scholar
  11. Cooper, A., & Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289(5482), 1139.CrossRefGoogle Scholar
  12. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.CrossRefGoogle Scholar
  13. Duggan, A. T., & Stoneking, M. (2013). A highly unstable recent mutation in human mtDNA. The American Journal of Human Genetics, 92(2), 279–284.CrossRefGoogle Scholar
  14. Duggan, A. T., Evans, B., Friedlaender, F. R., Friedlaender, J. S., Koki, G. Merriwether, D. A., et al. (2014). Maternal history of Oceania from complete mtDNA genomes: Contrasting ancient diversity with recent homogenization due to the Austronesian expansion. The American Journal of Human Genetics, 94, 1–13.Google Scholar
  15. Foley, B. P., Hansson, M. C., Kourkoumelis, D. P., & Theodoulou, T. A. (2012). Aspects of ancient Greek trade re-evaluated with amphora DNA evidence. Journal of Archaeological Science, 39, 389–398.CrossRefGoogle Scholar
  16. Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M., & Barnes, I. (2005). Assessing ancient DNA studies. Trends in Ecology & Evolution, 20(10), 541–544.CrossRefGoogle Scholar
  17. Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E., & Orlando, L. (2011). mapDamage: Testing for damage patterns in ancient DNA sequences. Bioinformatics, 27(15), 2153–2155.CrossRefGoogle Scholar
  18. Girdland Flink, L., Allen, R., Barnett, R., Malmström, H., Peters, J., Eriksson, J., et al. (2014). Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences, USA, 111(17), 6184–6189.CrossRefGoogle Scholar
  19. Golenberg, E. M. (1991). Amplification and analysis of Miocene plant fossil DNA. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 333(1268), 419–428.CrossRefGoogle Scholar
  20. Gongora, J., Rawlence, N. J., Mobegi, V. A., Jianlin, H., Alcalde, J. A., Matus, J. T., et al. (2008). Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proceedings of the National Academy of Sciences, USA, 105(30), 10308–10313.CrossRefGoogle Scholar
  21. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710–722.CrossRefGoogle Scholar
  22. Greig, K., Boocock, J., Prost, S., Horsburgh, K. A., Jacomb, C., Walter, R., et al. (2015). Complete mitochondrial genomes of New Zealand’s first dogs. PLOS ONE, 10(10), e0138536.Google Scholar
  23. Greig, K., Walter, R., & Matisoo-Smith, E. (2016). Dogs and people in Southeast Asia and the Pacific. In M. Oxenham & H. R. Buckley (Eds.), The Routledge handbook of bioarchaeology in Southeast Asia and the Pacific (pp. 462–482). Oxford: Taylor and Francis.Google Scholar
  24. Hagelberg, E., Sykes, B., & Hedges, R. (1989). Ancient bone DNA amplified. Nature, 342(6249), 485.CrossRefGoogle Scholar
  25. Hardy, C., Vigne, J. D., Casane, D., Dennebouy, N., Mounolou, J. C., & Monnerot, M. (1994). Origin of European rabbit (Oryctolagus cuninulus) in a Mediterranean island - zooarchaeology and ancient DNA examination. Journal of Evolutionary Biology, 7, 217–226.CrossRefGoogle Scholar
  26. Ho, S. Y. W., & Gilbert, M. T. P. (2010). Ancient mitogenomics. Mitochondrion, 10(1), 1–11.CrossRefGoogle Scholar
  27. Hofreiter, M., Münzel, S., Conard, N. J., Pollack, J., Slatkin, M., Weiss, G., & Pääbo, S. (2007). Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Current Biology, 17(4), R122–R123.CrossRefGoogle Scholar
  28. Kimura, B. K., LeFebvre, M. J., deFrance, S. D., Knodel, H. I., Turner, M. S., Fitzsimmons, N. S., et al. (2016). Origin of pre-Columbian guinea pigs from Caribbean archeological sites revealed through genetic analysis. Journal of Archaeological Science: Reports, 5, 442–452.CrossRefGoogle Scholar
  29. Kirch, P. V. (2000). On the road of the winds: An archaeological history of the Pacific Islands before European contact. Berkeley: University of California Press.Google Scholar
  30. Knapp, M., & Hofreiter, M. (2010). Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes, 1(2), 227–243.CrossRefGoogle Scholar
  31. Knapp, M., Horsburgh, K. A., Prost, S., Stanton, J.-A., Buckley, H. R., Walter, R. K., et al. (2012). Complete mitochondrial DNA genome sequences from the first New Zealanders. Proceedings of the National Academy of Sciences, USA, 109(45), 18350–18354.CrossRefGoogle Scholar
  32. Krause, J., Briggs, A. W., Kircher, M., Maricic, T., Zwyns, N., Derevianko, A., et al. (2010a). A complete mtDNA genome of an early modern human from Kostenki, Russia. Current Biology, 20(3), 231–236.CrossRefGoogle Scholar
  33. Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., et al. (2010b). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464(7290), 894–897.CrossRefGoogle Scholar
  34. Lalueza-Fox, C., & Gilbert, M. T. P. (2011). Paleogenomics of archaic hominins. Current Biology, 21(24), R1002–R1009.CrossRefGoogle Scholar
  35. Larson, G., Cucchi, T., Fujita, M., Matisoo-Smith, E., Robins, J., Anderson, A., et al. (2007). Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences, USA, 104(12), 4834–4839.CrossRefGoogle Scholar
  36. Lee, K.-T., Byun, M.-J., Kang, K.-S., Park, E.-W., Lee, S.-H., Cho, S., et al. (2011). Neuronal genes for subcutaneous fat thickness in human and pig are identified by local genomic sequencing and combined SNP association study. PLOS ONE, 6(2), e16356.Google Scholar
  37. Leonard, J. A., Shanks, O., Hofreiter, M., Kreuz, E., Hodges, L., Ream, W., et al. (2007). Animal DNA in PCR reagents plagues ancient DNA research. Journal of Archaeological Science, 34(9), 1361–1366.CrossRefGoogle Scholar
  38. Ludwig, A., Pruvost, M., Reissmann, M., Benecke, N., Brockmann, G. A., Castanos, P., et al. (2009). Coat color variation at the beginning of horse domestication. Science, 324(5926), 485–485.CrossRefGoogle Scholar
  39. Lum, J. K., McIntyre, J. K., Greger, D. L., Huffman, K. W., & Vilar, M. G. (2006). Recent Southeast Asian domestication and Lapita dispersal of sacred male pseudohermaphroditic “tuskers” and hairless pigs of Vanuatu. Proceedings of the National Academy of Sciences, USA, 103(46), 17190–17195.CrossRefGoogle Scholar
  40. Matisoo-Smith, E. (1994). The human colonisation of Polynesia. A novel approach: Genetic analyses of the Polynesian rat (Rattus exulans). Journal of the Polynesian Society, 103, 75–87.Google Scholar
  41. Matisoo-Smith, E. (2002). Something old, something new: Do genetic studies of contemporary populations reliably represent prehistoric populations of Pacific Rattus exulans? Human Biology, 74(3), 489–496.CrossRefGoogle Scholar
  42. Matisoo-Smith, E. (2007). Animal translocations, genetic variation and the human settlement of the Pacific. In J. S. Friedlaender (Ed.), Genes, language and culture history in the Southwest Pacific (pp. 157–170). Oxford: Oxford University Press.Google Scholar
  43. Matisoo-Smith, E. (2009). The Commensal model for human settlement of the Pacific 10 years on—What can we say and where to now? Journal of Island & Coastal Archaeology, 4(2), 151–163.CrossRefGoogle Scholar
  44. Matisoo-Smith, E., & Robins, J. H. (2004). Origins and dispersals of Pacific peoples: Evidence from mtDNA phylogenies of the Pacific rat. Proceedings of the National Academy of Sciences, USA, 101(24), 9167–9172.CrossRefGoogle Scholar
  45. Matisoo-Smith, E., Allen, J. S., Ladefoged, T. N., Roberts, R. M., & Lambert, D. M. (1997). Ancient DNA from Polynesian rats: Extraction, amplification and sequence from single small bones. Electrophoresis, 18(9), 1534–1537.CrossRefGoogle Scholar
  46. Matisoo-Smith, E., Roberts, R. M., Irwin, G. J., Allen, J. S., Penny, D., & Lambert, D. M. (1998). Patterns of prehistoric human mobility in Polynesia indicated by mtDNA from the Pacific rat. Proceedings of the National Academy of Sciences, USA, 95(25), 15145–15150.CrossRefGoogle Scholar
  47. Meyer, M., & Kircher, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 2010(6), pdb.prot5448.Google Scholar
  48. Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual. Science, 338(6104), 222–226.CrossRefGoogle Scholar
  49. Millar, C. D., Huynen, L., Subramanian, S., Mohandesan, E., & Lambert, D. M. (2008). New developments in ancient genomics. Trends in Ecology & Evolution, 23(7), 386–393.CrossRefGoogle Scholar
  50. Miller, W., Drautz, D. I., Ratan, A., Pusey, B., Qi, J., Lesk, A. M., et al. (2008). Sequencing the nuclear genome of the extinct woolly mammoth. Nature, 456(7220), 387–390.CrossRefGoogle Scholar
  51. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., & Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51, 263–273.CrossRefGoogle Scholar
  52. Neiman, M., Lundin, S., Savolainen, P., & Ahmadian, A. (2011). Decoding a substantial set of samples in parallel by massive sequencing. PLOS ONE, 6(3), e17785.Google Scholar
  53. Ollivier, M., Tresset, A., Hitte, C., Petit, C., Hughes, S., Gillet, B., et al. (2013). Evidence of coat color variation sheds new light on ancient canids. PLOS ONE, 8(10), e75110.Google Scholar
  54. Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., et al. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499(7456), 74–78.CrossRefGoogle Scholar
  55. Oskarsson, M. C. R., Klutsch, C. F. C., Boonyaprakob, U., Wilton, A., Tanabe, Y., & Savolainen, P. (2012). Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proceedings of the Royal Society B, 279(1730), 967–974.CrossRefGoogle Scholar
  56. Parks, M., Subramanian, S., Baroni, C., Salvatore, M. C., Zhang, G., Millar, C. D., et al. (2015). Ancient population genomics and the study of evolution. Philosophical Transactions of the Royal Society B, 370(1660).Google Scholar
  57. Poinar, H. N., Schwarz, C., Qi, J., Shapiro, B., MacPhee, R. D. E., Buigues, B., et al. (2006). Metagenomics to paleogenomics: Large-scale sequencing of Mammoth DNA. Science, 311(5759), 392–394.Google Scholar
  58. Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A., et al. (2011). An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 333(6052), 94–98.CrossRefGoogle Scholar
  59. Rawlence, N. J., Perry, G. L. W., Smith, I. W. G., Scofield, R. P., Tennyson, A. J. D., Matisoo-Smith, E., et al. (2015). Radiocarbon-dating and ancient DNA reveal rapid replacement of extinct prehistoric penguins. Quaternary Science Reviews, 112, 59–65.CrossRefGoogle Scholar
  60. Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441–448.CrossRefGoogle Scholar
  61. Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E., & Lundeberg, J. (2004). A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proceedings of the National Academy of Sciences, USA, 101(33), 12387–12390.CrossRefGoogle Scholar
  62. Shannon, L. M., Boyko, R. H., Castelhano, M., Corey, E., Hayward, J. J., McLean, C., et al. (2015). Genetic structure in village dogs reveals a Central Asian domestication origin. Proceedings of the National Academy of Sciences, USA, 112(44), 13639–13644.CrossRefGoogle Scholar
  63. Shapiro, B., Drummond, A. J., Rambaut, A., Wilson, M. C., Matheus, P. E., Sher, A. V., et al. (2004). Rise and fall of the Beringian steppe bison. Science, 306(5701), 1561–1565.CrossRefGoogle Scholar
  64. Storey, A. A., & Matisoo-Smith, E. (2014). No evidence against Polynesian dispersal of chickens to pre-Columbian South America. Proceedings of the National Academy of Sciences, USA, 111(35), E3583.CrossRefGoogle Scholar
  65. Storey, A. A., Ramirez, J. M., Quiroz, D., Burley, D. V., Addison, D. J., Walter, R., et al. (2007). Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proceedings of the National Academy of Sciences, USA, 104(25), 10335–10339.CrossRefGoogle Scholar
  66. Storey, A. A., Quiroz, D., Ramirez, J. M., Beavan-Athfield, N., Addison, D. J., Walter, R., et al. (2008). Pre-Colombian chickens, dates, isotopes, and mtDNA. Proceedings of the National Academy of Sciences, USA, 105(48), E99–E99.CrossRefGoogle Scholar
  67. Storey, A. A., Spriggs, M., Bedford, S., Hawkins, S. C., Robins, J. H., Huynen, L., et al. (2010). Mitochondrial DNA from 3000-year old chickens at the Teouma site, Vanuatu. Journal of Archaeological Science, 37(10), 2459–2468.CrossRefGoogle Scholar
  68. Storey, A. A., Athens, J. S., Bryant, D., Carson, M., Emery, K., deFrance, S., et al. (2012). Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLOS ONE, 7(7), e39171.Google Scholar
  69. Storey, A. A., Clarke, A. C., Ladefoged, T., Robins, J., & Matisoo-Smith, E. (2013a). DNA and Pacific commensal models: Applications, construction, limitations, and future prospects. The Journal of Island and Coastal Archaeology, 8(1), 37–65.CrossRefGoogle Scholar
  70. Storey, A. A., Quiroz, D., Beavan, N., & Matisoo-Smith, E. (2013b). Polynesian chickens in the New World: A detailed application of a commensal approach. Archaeology in Oceania, 48, 101–119.CrossRefGoogle Scholar
  71. Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., et al. (2014a). Reply to Beavan, Bryant, and Storey and Matisoo-Smith: Ancestral Polynesian “D” haplotypes reflect authentic Pacific chicken lineages. Proceedings of the National Academy of Sciences, USA, 111(35), E3585–E3586.CrossRefGoogle Scholar
  72. Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., et al. (2014b). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences, USA, 111(13), 4826–4831.CrossRefGoogle Scholar
  73. Tito, R. Y., Knights, D., Metcalf, J., Obregon-Tito, A. J., Cleeland, L., Najar, F., et al. (2012). Insights from characterizing extinct human gut microbiomes. PLOS ONE, 7(12), e51146.Google Scholar
  74. Tromp, M., & Dudgeon, J. V. (2015). Differentiating dietary and non-dietary microfossils extracted from human dental calculus: The importance of sweet potato to ancient diet on Rapa Nui. Journal of Archaeological Science, 54, 54–63.CrossRefGoogle Scholar
  75. Valdiosera, C. E., Garcia-Garitagoitia, J. L., Garcia, N., Doadrio, I., Thomas, M. G., Hanni, C., et al. (2008). Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos). Proceedings of the National Academy of Sciences, USA, 105(13), 5123–5128.CrossRefGoogle Scholar
  76. Verscheure, S., Backeljau, T., & Desmyter, S. (2014). Dog mitochondrial genome sequencing to enhance dog mtDNA discrimination power in forensic casework. Forensic Science International: Genetics, 12, 60–68.CrossRefGoogle Scholar
  77. Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., et al. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46(4), 336–344.CrossRefGoogle Scholar
  78. Warinner, C., Speller, C., Collins, M. J., & Lewis, C. M., Jr. (2015). Ancient human microbiomes. Journal of Human Evolution, 79, 125–136.CrossRefGoogle Scholar
  79. Wayne, R. K., Leonard, J. A., & Cooper, A. (1999). Full of sound and fury: History of ancient DNA. Annual Review of Ecology and Systematics, 30(1), 457–477.CrossRefGoogle Scholar
  80. Weyrich, L. S., Dobney, K., & Cooper, A. (2015). Ancient DNA analysis of dental calculus. Journal of Human Evolution, 79, 119–124.CrossRefGoogle Scholar
  81. Wilmshurst, J. M., Hunt, T. L., Lipo, C. P., & Anderson, A. J. (2011). High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proceedings of the National Academy of Sciences, USA, 108(5), 1815–1820.CrossRefGoogle Scholar
  82. Ziesemer, K. A., Mann, A. E., Sankaranarayanan, K., Schroeder, H., Ozga, A. T., Brandt, B. W., et al. (2015). Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Scientific Reports, 5, 16498.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of AnatomyUniversity of OtagoDunedinNew Zealand

Personalised recommendations