Skip to main content

Nanoporous Gold Nanoparticles and Arrays for Label-Free Nanoplasmonic Biosensing

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Surface plasmons (SP) are depicted in the classical picture as a fundamental electromagnetic mode of an interface between a metal (or a semi-conductor) and a dielectric medium and involving surface collective electronic oscilSurface plasmonslations Dror and William (Modern introduction to surface plasmons. Cambridge University Press, Cambridge, UK, [1]).

This is a preview of subscription content, log in via an institution.

References

  1. Dror S, William C (2010) Modern introduction to surface plasmons. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Zia R, Schuller SA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27

    Article  CAS  Google Scholar 

  3. Polman A, Atwater HA (2005) Plasmonics: optics at the nanoscale. Mater Today 8:56

    Article  Google Scholar 

  4. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 11(11):641–648

    Article  Google Scholar 

  5. Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114(11):5728–5752

    Article  CAS  Google Scholar 

  6. Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H (2013) Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale 5:10127–10140

    Article  CAS  Google Scholar 

  7. Sotiriou GA (2013) Biomedical applications of multifunctional plasmonic nanoparticles. WIREs Nanomedicine Nanobiotechnoly 5:19–30

    Article  CAS  Google Scholar 

  8. Shih W-C, Santos GM, Zhao F, Zenasni O, Arnob MMP (2016) Simultaneous chemical and refractive index sensing in the 1−2.5 μm near-infrared wavelength range on nanoporous gold disks. Nano Lett 16:4641–4647

    Article  CAS  Google Scholar 

  9. Le Ru E, Etchegoin P (2008) Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects. Elsevier

    Google Scholar 

  10. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713

    Article  CAS  Google Scholar 

  11. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032

    Article  CAS  Google Scholar 

  12. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417

    Article  CAS  Google Scholar 

  13. Hirsch LR, Stafford JR, Bankson JA, Sershen SR, Rivera B, Price R, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554

    Article  CAS  Google Scholar 

  14. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  CAS  Google Scholar 

  15. Biener J, Nyce GW, Hodge AM, Biener MM, Hamza AV, Maier SA (2008) Nanoporous plasmonic metamaterials. Adv Mater 20(6):1211–1217

    Article  CAS  Google Scholar 

  16. Lang X, Qian L, Guan P, Zi J, Chen M (2011) Localized surface plasmon resonances of nanoporous gold. Appl Phys Lett 98(9):093701

    Article  Google Scholar 

  17. Liu H, Zhang L, Lang X, Yamaguchi Y, Iwasaki H, Inouye Y, Xue Q, Chen M (2011) Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep 1:112

    Article  CAS  Google Scholar 

  18. Qi J, Motwani P, Gheewala M, Brennan C, Wolfe JC, Shih W-C (2013) Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale 5(10):4105–4109

    Article  CAS  Google Scholar 

  19. Ruan W-D, Lu Z-C, Ji N, Wang C-X, Bing Z, Zhang J-H (2007) Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique. Chem Res Chin Univ 23(6):712–714

    Article  CAS  Google Scholar 

  20. Parida S, Kramer D, Volkert CA, Rosner H, Erlebacher J, Weissmuller J (2006) Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett 97(3):035504

    Article  CAS  Google Scholar 

  21. Crowson DA, Farkas D, Corcoran SG (2007) Geometric relaxation of nanoporous metals: the role of surface relaxation. Scr mater 56(11):919–922

    Google Scholar 

  22. Read JS (1988) Introduction to the principle of ceramic processing. Wiley

    Google Scholar 

  23. Seker E, Berdichevsky Y, Begley MR, Reed ML, Staley KJ, Yarmush ML (2010) The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neuralelectrophysiology studies. Nanotechnology 21(12):125504

    Article  Google Scholar 

  24. Zhao F, Zeng J, Santos GM, Shih W-C (2015) In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying. Mater Sci Eng B 194:34–40

    Google Scholar 

  25. Li J, Zhao F, Shih W-C (2016) Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying. Opt Express 24(20):23610–23617

    Article  Google Scholar 

  26. Qian L, Chen M (2007) Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett 91(8):083105

    Article  Google Scholar 

  27. Strehle KR, Cialla D, Rosch P, Henkel T, Kohler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547

    Article  CAS  Google Scholar 

  28. Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo S-K (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219

    Article  CAS  Google Scholar 

  29. Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253

    Article  CAS  Google Scholar 

  30. Dee KC, Puleo DA, Bizios R (2003) An introduction to tissue-biomaterial interactions. Wiley

    Google Scholar 

  31. Santos GM, Zhao F, Zeng J, Shih W-C (2014) Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 6(11):5718–5724

    Article  CAS  Google Scholar 

  32. Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, Willson RC, Shih W-C (2014) Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(15):8521–8526

    Article  CAS  Google Scholar 

  33. Li M, Zhao F, Zeng J, Qi J, Lu J, Shih W-C (2014) Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J Biomed Opt 19(11):111611

    Article  Google Scholar 

  34. Li M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative DC dielectrophoresis. J Micromech Microeng 22(9):095001

    Article  Google Scholar 

  35. Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34(08):569–576

    Article  CAS  Google Scholar 

  36. Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) SPP and LSPR in NPG membranes. Anal Chem 78(20):7346–7350

    Article  CAS  Google Scholar 

  37. Wittstock A, Biener J, Erlebacher J (2012) Nanoporous gold: from an ancient technology to a high-tech material. R Soc Chem

    Google Scholar 

  38. Ryckman JD, Jiao Y, Weiss SM (2013) Three-dimensional patterning and morphological control of porous nanomaterials by gray-scale direct imprinting. Sci Rep 3

    Google Scholar 

  39. Halas NJ, Lal S, Link S, Chang W-S, Natelson D, Hafner JH, Nordlander P (2012) A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater 24(36):4842–4877

    Article  CAS  Google Scholar 

  40. Zeng J, Zhao F, Qi J, Li Y, Li C-H, Yao Y, Lee RT, Shih W-C (2014) Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles. RSC Adv 4(69):3688–36682

    Google Scholar 

  41. Zhao F, Zeng J, Arnob MMP, Sun P, Qi J, Motwani P, Gheewala M, Li C-H, Paterson A, Strych U, Raja B, Willson RC, Wolfe JC, Lee TR, Shih W-C (2014) Monolithic NPG nanoparticles with large surface area, tunable plasmonics and high-density internal hot spots. Nanoscale 6(14):8199–8207

    Article  CAS  Google Scholar 

  42. Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661

    Article  CAS  Google Scholar 

  43. Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89(5):053102

    Article  Google Scholar 

  44. Gloria D, Gooding JJ, Moran G, Hibbert BD (2011) Electrochemically fabricated three dimensional nano-porous gold films optimised for surface enhanced Raman scattering. J Electroanal Chem 656(1):114–119

    Article  CAS  Google Scholar 

  45. Li Z, Yang Y, Xia Y, Huang W, Zheng J, Li Z (2012) Fabrication of nano-network gold films via anodization of gold electrode and their application in SERS. J Solid State Electrochem 16(4):1733–1739

    Article  CAS  Google Scholar 

  46. Aggarwal RL, Farrar LW, Diebold ED, Polla DL (2009) Measurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates. J Raman Spectrosc 40(9):1331–1333

    Article  CAS  Google Scholar 

  47. Gui JY, Stern DA, Frank DG, Lu F, Zapien DC, Hubbard AT (1991) Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at silver (111) and platinum (111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low energy electron dif. Langmuir 7(5):955–963

    Article  CAS  Google Scholar 

  48. Jiao Y, Ryckman JD, Ciesielski PN, Escobar CA, Jennings KG, Weiss SM (2011) Patterned nanoporous gold as an effective SERS template. Nanotechnology 22(29):295302

    Article  Google Scholar 

  49. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analitycal Chem 74(20):5297–5305

    Article  CAS  Google Scholar 

  50. Hanarp P, Käll M, Sutherland DS (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B 107(24):5768–5772

    Google Scholar 

  51. Hu M, Chen J, Marquez M, Xia Y, Hartland GV (2007) Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of Au-Ag bimetallic nanoboxes and nanocages. J Phys Chem C 111(34):12558–12565

    Article  CAS  Google Scholar 

  52. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  53. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic. Nano Lett 6(4):827–832

    Article  CAS  Google Scholar 

  54. Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Google Scholar 

  55. Qi J, Shih W-C (2012) Parallel Raman microspectroscopy using programmable multipoint illumination. Opt Lett 37(8):1289–1291

    Article  CAS  Google Scholar 

  56. Park SG, Lee NS, Lee SH (2000) Vibrational analysis of dopamine neutral Bae based on density functional force field. Bull Korean Chem Soc 21(10):1035–1038

    Google Scholar 

  57. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139

    Article  CAS  Google Scholar 

  58. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  CAS  Google Scholar 

  59. Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193

    Article  CAS  Google Scholar 

  60. Wang H-N, Dhawan A, Du Y, Batchelor D, Leonard DN, Misra V, Vo-Dinh T (2013) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015

    Article  CAS  Google Scholar 

  61. Wang H-N, Fales AM, Zaas AK, Woods CW, Burke T, Ginsburg GS, Vo-Dinh T (2013) Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal Chim Acta 786:153–158

    Article  CAS  Google Scholar 

  62. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  CAS  Google Scholar 

  63. Shih WC (2014) Label-free in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(5):8521–8526

    Google Scholar 

  64. Li M, Lu J, Qi J, Zhao F, Zeng J, Yu JC-C, Shih W-C (2014) Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. J Biomed Opt 19(5):050501

    Article  Google Scholar 

  65. Li M, Du Y, Zhao F, Zeng J, Mohan C, Shih W-C (2015) Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed Opt Express 6(3):849–858

    Article  Google Scholar 

  66. Xie C, Sharma R, Wang H, Zhou XJ, Mohan C (2004) Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047–5055

    Article  CAS  Google Scholar 

  67. Qiu S, Zhao F, Zenasni O, Li J, Shih W-C (2016) Nanoporous gold disks functionalized with stabilized G-quadruplex moieties for sensing small molecules ACS Appl Mater Interfaces 8(44):29968–29976

    Google Scholar 

  68. Bhasikuttan AC, Mohanty J (2015) Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun 51(36):7581–7597

    Article  CAS  Google Scholar 

  69. Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6(1):75–80

    Article  CAS  Google Scholar 

  70. Olejko L, Cywinski PJ, Bald I (2015) Ion-Selective formation of a guanine quadruplex on DNA origami structures. Angew Chem Int Ed 54(2):673–677

    CAS  Google Scholar 

  71. Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10):782–787

    Article  CAS  Google Scholar 

  72. Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-Quadruplex. Angew Chem Int Ed 46(48):9305–9307

    Article  CAS  Google Scholar 

  73. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    Article  CAS  Google Scholar 

  74. Santos GM, Zhao F, Zeng J (2015) Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. J Biophotonics 8(10):855–863

    Article  CAS  Google Scholar 

  75. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13(3):267–276

    Article  CAS  Google Scholar 

  76. Gartia MR, Hsiao A, Sivaguru M, Chen Y, Liu LG (2011) Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology 22(36):365203

    Article  Google Scholar 

  77. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696

    Article  CAS  Google Scholar 

  78. Ranjan Gartia M, Eichorst JP, Clegg RM, Logan Liu G (2012) Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl Phys Lett 101(2):023118

    Google Scholar 

  79. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002

    Article  Google Scholar 

  80. Campion A, Gallo AR, Harris CB, Robota HJ, Whitmore PM (1980) Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances. Chem Phys Lett 73(3):447–450

    Article  CAS  Google Scholar 

  81. Lang XY, Guan PF, Fujita T, Chen M (2011) Tailored nanoporous gold for ultrahigh fluorescence enhancement. Phys Chem Chem Phys 13(9):3795–3799

    Article  CAS  Google Scholar 

  82. Lang XY, Guan PF, Zhang L, Fujita T, Chen M (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96(7):073701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chuan Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Artur, C.G., Shih, WC. (2018). Nanoporous Gold Nanoparticles and Arrays for Label-Free Nanoplasmonic Biosensing. In: Oh, SH., Escobedo, C., Brolo, A. (eds) Miniature Fluidic Devices for Rapid Biological Detection. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_2

Download citation

Publish with us

Policies and ethics