Selected Studied Cases

  • Rodolphe Antoine
  • Vlasta Bonačić-Koutecký
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


After discussing the theoretical and experimental methodology in order to investigate optical nonlinearities of liganded metal quantum clusters, we wish to present the various concepts useful for applications and illustrate them with some examples. The incentive is to demonstrate, by selected studied cases, how liganded gold and silver quantum clusters can serve to evaluate their nonlinear optical properties as a function of their size and composition.


  1. 1.
    Qu X, Li Y, Li L, Wang Y, Liang J, Liang J (2015) Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomater 2015:23Google Scholar
  2. 2.
    Chen L-Y, Wang C-W, Yuan Z, Chang H-T (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216Google Scholar
  3. 3.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346CrossRefGoogle Scholar
  4. 4.
    Diez I, Ras RHA (1963) Fluorescent silver nanoclusters. Nanoscale 2011:3Google Scholar
  5. 5.
    Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549CrossRefGoogle Scholar
  6. 6.
    Adhikari B, Banerjee A (2010) Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem Mater 22:4364CrossRefGoogle Scholar
  7. 7.
    Russier-Antoine I, Bertorelle F, Hamouda R, Rayane D, Dugourd P, Sanader Z, Bonacic-Koutecky V, Brevet P-F, Antoine R (2016) Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation. Nanoscale 8:2892CrossRefGoogle Scholar
  8. 8.
    van der Linden M, Barendregt A, van Bunningen AJ, Chin PTK, Thies-Weesie D, de Groot FMF, Meijerink A (2016) Characterisation, degradation and regeneration of luminescent Ag29 clusters in solution. Nanoscale 8:19901CrossRefGoogle Scholar
  9. 9.
    Ramakrishna G, Varnavski O, Kim J, Lee D, Goodson T (2008) Quantum-sized gold clusters as efficient two-photon absorbers. J Am Chem Soc 130:5032CrossRefGoogle Scholar
  10. 10.
    Russier-Antoine I, Bertorelle F, Vojkovic M, Rayane D, Salmon E, Jonin C, Dugourd P, Antoine R, Brevet P-F (2014) Non-linear optical properties of gold quantum clusters. The smaller the better. Nanoscale 6:13572CrossRefGoogle Scholar
  11. 11.
    Patel SA, Richards CI, Hsiang J-C, Dickson RM (2008) Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J Am Chem Soc 130:11602CrossRefGoogle Scholar
  12. 12.
    Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. JOSA B 13:481CrossRefGoogle Scholar
  13. 13.
    Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568CrossRefGoogle Scholar
  14. 14.
    Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332CrossRefGoogle Scholar
  15. 15.
    Nappa J, Revillod G, Russier-Antoine I, Benichou E, Jonin C, Brevet PF (2005) Electric dipole origin of the second harmonic generation of small metallic particles. Phys Rev B 71:165407CrossRefGoogle Scholar
  16. 16.
    Nappa J, Russier-Antoine I, Benichou E, Jonin C, Brevet PF (2006) Second harmonic generation from small gold metallic particles: from the dipolar to the quadrupolar response. J Chem Phys 125:184712CrossRefGoogle Scholar
  17. 17.
    Russier-Antoine I, Benichou E, Bachelier G, Jonin C, Brevet PF (2007) Multipolar contributions of the second harmonic generation from silver and gold nanoparticles. J Phys Chem C 111:9044CrossRefGoogle Scholar
  18. 18.
    Duboisset J, Deniset-Besseau A, Benichou E, Russier-Antoine I, Lascoux N, Jonin C, Hache F, Schanne-Klein M-C, Brevet P-F (2013) A bottom-up approach to build the hyperpolarizability of peptides and proteins from their amino acids. J Phys Chem B 117:9877CrossRefGoogle Scholar
  19. 19.
    Tlahuice-Flores A, Jose-Yacaman M, Whetten RL (2013) On the structure of the thiolated Au15 cluster. Phys Chem Chem Phys 15:19557CrossRefGoogle Scholar
  20. 20.
    Jiang D-E, Overbury SH, Dai S (2013) Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J Am Chem Soc 135:8786CrossRefGoogle Scholar
  21. 21.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883CrossRefGoogle Scholar
  22. 22.
    Bertorelle F, Russier-Antoine I, Calin N, Comby-Zerbino C, Bensalah-Ledoux A, Guy S, Dugourd P, Brevet P-F, Sanader Z, Krstić M, Bonačić-Koutecký V, Antoine R (2017) Au10(SG)10: a chiral gold catenane nanocluster with zero confined electrons. Optical properties and first-principles theoretical analysis. J Phys Chem Lett 1979Google Scholar
  23. 23.
    Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356CrossRefGoogle Scholar
  24. 24.
    Van Steerteghem N, Van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S (2016) Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics. Nanoscale 8:12123CrossRefGoogle Scholar
  25. 25.
    Knoppe S, Häkkinen H, Verbiest T (2015) Nonlinear optical properties of thiolate-protected gold clusters: a theoretical survey of the first hyperpolarizabilities. J Phys Chem C 119:27676CrossRefGoogle Scholar
  26. 26.
    Knoppe S (2015) Generation of isomers for icosahedral clusters A12−xBx (x = 0–12) from a symmetry-based algorithm. Polyhedron 100:351CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR5306 - UCBL - CNRSVilleurbanneFrance
  2. 2.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Center of excellence for Science and Technology-Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST)University of SplitSplitRepublic of Croatia

Personalised recommendations