Liganded Silver and Gold Quantum Clusters: Background of Their Structural, Electronic, and Optical Properties

Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


The purpose of this chapter is first to introduce physical background allowing one to gain understanding about the connection between electronic energy quantization in metal nanoclusters and their optical properties. The optical response, in terms of electronic transitions whose positions and intensities are predicted by sophisticated quantum mechanical calculations, will be described. The concept of ligand-protected metal clusters will be introduced, and we then will summarize briefly the synthetic work on liganded quantum clusters of gold and silver and their characterization. Finally, we will discuss the link between their structural, electronic, and optical properties.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Christensen NE (1972) The band structure of silver and optical interband transitions. Phys Status Solidi (b) 54:551Google Scholar
  3. 3.
    Christensen NE (1978) Spin-orbit projected d densities-of-states of Pd, Ag, Pt, and Au. J Phys F: Met Phys 8:L51CrossRefGoogle Scholar
  4. 4.
    Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343CrossRefGoogle Scholar
  5. 5.
    Ashcroft NW, Mermin N (1976) Solid state physics. Harcourt Inc., OrlandoGoogle Scholar
  6. 6.
    Bonačić-Koutecky V, Veyret V, Mitrić R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450CrossRefGoogle Scholar
  7. 7.
    Bonačić-Koutecky V, Mitrić R, Bürgel C, Noack H, Hartmann M, Pittner J (2005) Tailoring the chemical reactivity and optical properties of clusters by size, structures and lasers. Eur Phys J D 34:113CrossRefGoogle Scholar
  8. 8.
    Bellina B, Compagnon I, Bertorelle F, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitrić R, Bonačić-Koutecky V (2011) Structural and optical properties of isolated noble metal-glutathione complexes. Insight into the chemistry of liganded nanoclusters. J Phys Chem C 115:24549CrossRefGoogle Scholar
  9. 9.
    Markus R, Schwentner N (1987) Physics and chemistry of small clusters. Plenum, New YorkGoogle Scholar
  10. 10.
    Harbich W, Fedrigo S, Buttet J, Lindsay DM (1991) Optical spectroscopy on size selected gold clusters deposited in rare gas matrices. Z Phys D At, Mol Clusters 19:157CrossRefGoogle Scholar
  11. 11.
    Harbich W, Fedrigo S, Buttet J, Lindsay DM (1992) Deposition of mass selected gold clusters in solid krypton. J Chem Phys 96:8104CrossRefGoogle Scholar
  12. 12.
    Collings BA, Athanassenas K, Lacombe D, Rayner DM, Hackett PA (1994) Optical absorption spectra of Au7, Au9, Au11, and Au13, and their cations: gold clusters with 6, 7, 8, 9, 10, 11, 12, and 13s-electrons. J Chem Phys 101:3506CrossRefGoogle Scholar
  13. 13.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Met Phys 4:999CrossRefGoogle Scholar
  14. 14.
    Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) Deposition of mass selected silver clusters in rare gas matrices. J Chem Phys 93:8535CrossRefGoogle Scholar
  15. 15.
    Sieber C, Buttet J, Harbich W, Félix C, Mitrić R, Bonačić-Koutecký V (2004) Isomer-specific spectroscopy of metal clusters trapped in a matrix: Ag9. Phys Rev A 70:041201CrossRefGoogle Scholar
  16. 16.
    Chen W, Wang Z, Lin Z, Lin L, Fang K, Xu Y, Su M, Lin J (1998) Photostimulated luminescence of AgI clusters in zeolite-Y. J Appl Phys 83:3811CrossRefGoogle Scholar
  17. 17.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103CrossRefGoogle Scholar
  18. 18.
    Hild U, Dietrich G, Krückeberg S, Lindinger M, Lützenkirchen K, Schweikhard L, Walther C, Ziegler J (1998) Time-resolved photofragmentation of stored silver clusters Agn+ (n = 8–21). Phys Rev A: At Mol Opt Phys 57:7Google Scholar
  19. 19.
    Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982Google Scholar
  20. 20.
    Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038CrossRefGoogle Scholar
  21. 21.
    Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568CrossRefGoogle Scholar
  22. 22.
    Diez I, Ras RHA (1963) Fluorescent silver nanoclusters. Nanoscale 2011:3Google Scholar
  23. 23.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun 7:801Google Scholar
  24. 24.
    Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)—thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261CrossRefGoogle Scholar
  25. 25.
    Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2004) Magic-numbered Aun clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J Am Chem Soc 126:6518CrossRefGoogle Scholar
  26. 26.
    Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643CrossRefGoogle Scholar
  27. 27.
    Zeng C, Chen Y, Das A, Jin R (2015) Transformation chemistry of gold nanoclusters: from one stable size to another. J Phys Chem Lett 6:2976CrossRefGoogle Scholar
  28. 28.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346CrossRefGoogle Scholar
  29. 29.
    Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549CrossRefGoogle Scholar
  30. 30.
    Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135:868CrossRefGoogle Scholar
  31. 31.
    Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x(L)x. J Am Chem Soc 130:5940CrossRefGoogle Scholar
  32. 32.
    Kumar S, Bolan MD, Bigioni TP (2010) Glutathione-stabilized magic-number silver cluster compounds. J Am Chem Soc 132:13141CrossRefGoogle Scholar
  33. 33.
    Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P (2013) Glutathione capped gold AuN(SG)M clusters studied by isotope-resolved mass spectrometry. Int J Mass Spectrom 335:1CrossRefGoogle Scholar
  34. 34.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430CrossRefGoogle Scholar
  35. 35.
    Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR5306 - UCBL - CNRSVilleurbanneFrance
  2. 2.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Center of excellence for Science and Technology-Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST)University of SplitSplitRepublic of Croatia

Personalised recommendations