Laplacian Deformation with Symmetry Constraints for Reconstruction of Defective Skulls

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10425)


Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Our previous method called FAIS (Flip-Avoiding Interpolating Surface) [17] is reported to produce more accurate reconstruction of skulls compared to several existing methods. FAIS iteratively applies Laplacian deformation to non-rigidly register a reference to fit the target. Both FAIS and Laplacian deformation have one major drawback. They can produce distorted results when they are applied on skulls with large amounts of defective parts. This paper introduces symmetric constraints to the original Laplacian deformation and FAIS. Comprehensive test results show that the Laplacian deformation and FAIS with symmetric constraints are more robust and accurate than their original counterparts in reconstructing defective skulls with large amounts of defects.


Laplacian deformation Non-rigid registration 



This research is supported by MOE grant MOE2014-T2-1-062.


  1. 1.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: Proceedings CVPR, pp. 1–8 (2007)Google Scholar
  2. 2.
    Bonarrigo, F., Signoroni, A., Botsch, M.: Deformable registration using patch-wise shape matching. Graph. Models 76(5), 554–565 (2014)CrossRefGoogle Scholar
  3. 3.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. PAMI 11, 567–585 (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cevidanes, L., Tucker, S., Styner, M., Kim, H., Reyes, M., Proffit, W., Turvey, T., Jaskolka, M.: 3D surgical simulation. Am. J. Orthod. Dentofac. Orthop. 138(3), 361–371 (2010)CrossRefGoogle Scholar
  5. 5.
    De Momi, E., Chapuis, J., Pappas, I., Ferrigno, G., Hallermann, W., Schramm, A., Caversaccio, M.: Automatic extraction of the mid-facial plane for cranio-maxillofacial surgery planning. Int. J. Oral Maxillofac. Surg. 35(7), 636–642 (2006)CrossRefGoogle Scholar
  6. 6.
    Deng, Q., Zhou, M., Shui, W., Wu, Z., Ji, Y., Bai, R.: A novel skull registration based on global and local deformations for craniofacial reconstruction. Forensic Sci. Int. 208, 95–102 (2011)CrossRefGoogle Scholar
  7. 7.
    Ding, F., Yang, W., Leow, W.K., Venkatesh, S.: 3D segmentation of soft organs by flipping-free mesh deformation. In: Proceedings WACV (2009)Google Scholar
  8. 8.
    Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore (1996)zbMATHGoogle Scholar
  9. 9.
    Hontani, H., Matsuno, T., Sawada, Y.: Robust nonrigid ICP using outlier-sparsity regularization. In: Proceedings CVPR, pp. 174–181 (2012)Google Scholar
  10. 10.
    Lapeer, R.J.A., Prager, R.W.: 3D shape recovery of a newborn skull using thin-plate splines. Comput. Med. Imaging Graph. 24(3), 193–204 (2000)CrossRefGoogle Scholar
  11. 11.
    Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04271-3_1 CrossRefGoogle Scholar
  12. 12.
    Masuda, H., Yoshioka, Y., Furukawa, Y.: Interactive mesh deformation using equality-constrained least squares. Comput. Graph. 30(6), 936–946 (2006)CrossRefGoogle Scholar
  13. 13.
    Rosas, A., Bastir, M.: Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am. J. Phys. Anthropol. 117, 236–245 (2002)CrossRefGoogle Scholar
  14. 14.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings Eurographics/ACM SIGGRAPH Symposium Geometry Processing, pp. 175–184 (2004)Google Scholar
  15. 15.
    Turner, W.D., Brown, R.E., Kelliher, T.P., Tu, P.H., Taister, M.A., Miller, K.W.: A novel method of automated skull registration for forensic facial approximation. Forensic Sci. Int. 154, 149–158 (2005)CrossRefGoogle Scholar
  16. 16.
    Wei, L., Yu, W., Li, M., Li, X.: Skull assembly and completion using template-based surface matching. In: Proceedings International Conference 3D Imaging, Modeling, Processing, Visualization and Transmission (2011)Google Scholar
  17. 17.
    Xie, S., Leow, W.K.: Flip-avoiding interpolating surface registration for skull reconstruction. In: Proceedings ICPR (2016)Google Scholar
  18. 18.
    Zachow, S., Lamecker, H., Elsholtz, B., Stiller, M.: Reconstruction of mandibular dysplasia using a statistical 3D shape model. In: Proceedings Computer Assisted Radiology and Surgery, pp. 1238–1243 (2005)Google Scholar
  19. 19.
    Zhang, K., Cheng, Y., Leow, W.K.: Dense correspondence of skull models by automatic detection of anatomical landmarks. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8047, pp. 229–236. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40261-6_27 CrossRefGoogle Scholar
  20. 20.
    Zhang, K., Leow, W.K., Cheng, Y.: Performance analysis of active shape reconstruction of fractured, incomplete skulls. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 312–324. Springer, Cham (2015). doi: 10.1007/978-3-319-23192-1_26 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeSingapore
  2. 2.Department of SurgeryNational University of SingaporeSingaporeSingapore
  3. 3.Division of Plastic, Reconstruction and Aesthetic SurgeryNational University HospitalSingaporeSingapore

Personalised recommendations