A Multilayer Backpropagation Saliency Detection Algorithm Based on Depth Mining

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10425)


Saliency detection is an active topic in multimedia field. Several algorithms have been proposed in this field. Most previous works on saliency detection focus on 2D images. However, for some complex situations which contain multiple objects or complex background, they are not robust and their performances are not satisfied. Recently, 3D visual information supplies a powerful cue for saliency detection. In this paper, we propose a multilayer backpropagation saliency detection algorithm based on depth mining by which we exploit depth cue from four different layers of images. The evaluation of the proposed algorithm on two challenging datasets shows that our algorithm outperforms state-of-the-art.


Saliency detection Depth cue Depth mining Multilayer Backpropagation 



This work was supported by the grant of National Science Foundation of China (No.U1611461), the grant of Science and Technology Planning Project of Guangdong Province, China (No.2014B090910001), the grant of Guangdong Province Projects of 2014B010117007 and the grant of Shenzhen Peacock Plan (No.20130408-183003656).


  1. 1.
    Cheng, M.M., Mitra, N.J., Huang, X., et al.: SalientShape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)CrossRefGoogle Scholar
  2. 2.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)CrossRefGoogle Scholar
  3. 3.
    Donoser, M., Urschler, M., Hirzer, M., et al.: Saliency driven total variation segmentation. In: IEEE International Conference on Computer Vision, pp. 817–824. IEEE (2009)Google Scholar
  4. 4.
    Sun, J., Ling, H.: Scale and object aware image retargeting for thumbnail browsing. In: IEEE International Conference on Computer Vision, pp. 1511–1518 (2011)Google Scholar
  5. 5.
    Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13(10), 1304–1318 (2004)CrossRefGoogle Scholar
  6. 6.
    Qin, Y., Lu, H., Xu, Y., et al.: Saliency detection via cellular automata. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 110–119. IEEE (2015)Google Scholar
  7. 7.
    Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)Google Scholar
  8. 8.
    Murray, N., Vanrell, M., Otazu, X., et al.: Saliency estimation using a nonparametric low-level vision model. 42(7), 433–440 (2011)Google Scholar
  9. 9.
    Shi, J., et al.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Patt. Anal. Mach. Intell. 38(4), 717 (2016)CrossRefGoogle Scholar
  10. 10.
    Li, H., Lu, H., Lin, Z., et al.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process. 24(10), 3176–3186 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhu, C., Li, G., Wang, W., et al.: Salient object detection with complex scene based on cognitive. IEEE Third International Conference on Multimedia Big Data, pp. 33–37. IEEE (2017)Google Scholar
  12. 12.
    Cheng, Y., Fu, H., Wei, X., et al.: Depth enhanced saliency detection method. Eur. J. Histochem. Ejh 55(1), 301–308 (2014)Google Scholar
  13. 13.
    Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). doi: 10.1007/978-3-319-10578-9_7 Google Scholar
  14. 14.
    Ju, R., Liu, Y., Ren, T., et al.: Depth-aware salient object detection using anisotropic center-surround difference. Sig. Process. Image Commun. 38(5), 115–126 (2015)CrossRefGoogle Scholar
  15. 15.
    Guo, J., Ren, T., Bei, J.: Salient object detection for RGB-D image via saliency evolution. In: IEEE International Conference on Multimedia and Expo, pp. 1–6. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electronic and Computer EngineeringShenzhen Graduate School, Peking UniversityShenzhenChina
  2. 2.Academy of Broadcasting Science, SAPPRFTBeijingChina

Personalised recommendations