Advertisement

Enhancing Textbook Study Experiences with Pictorial Bar-Codes and Augmented Reality

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10425)

Abstract

Augmented Reality (AR) could overlay computer-generated graphics onto the student’s textbooks to make them more attractive, hence, motivate students to learn. However, most existing AR applications use either template (picture) markers or bar-code markers to conceal the information that it wants to display. The formal, being in a pictorial form, can be recognized easily but they are computationally expensive to generate and cannot be easily decoded. The latter displays only numeric data and are therefore cheap to produce and straightforward to decode. However, they look uninteresting and uninformative. In this paper, we present a way that combines the advantage of both the template and bar-code markers to be used in education, e.g. textbook’s figures. Our method decorates on top of an original pictorial textbook’s figure (e.g. historical photos, images, graphs, charts, maps, or drawings) additional regions, to form a single image stereogram that conceals a bar-code. This novel type of figure displays not only a realistic-looking picture but also contains encoded numeric information on students’ textbooks. Students can turn the pages of the book, look at the figures, and understand them without any additional technology. However, if students observe the pages through a hand-held Augmented Reality devices, they see 3D virtual models appearing out of the pages. In this article, we also demonstrate that this pictorial bar-code is relatively robust under various conditions and scaling. Thus, it provides a promising AR approach to be used in school textbooks of all grades, to enhance study experiences.

Keywords

Augmented Reality Computer vision Image processing Education Textbook 

References

  1. 1.
    Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997)CrossRefGoogle Scholar
  2. 2.
    Billinghurst, M., Kato, H., Poupyrev, I.: The magicbook: a transitional AR interface. Comput. Graphics 25(5), 745–753 (2001)CrossRefGoogle Scholar
  3. 3.
    Blehm, C., Vishnu, S., Khattak, A., Mitra, S., Yee, R.W.: Computer vision syndrome: a review. Surv. Ophthalmol. 50(3), 253–262 (2005)CrossRefGoogle Scholar
  4. 4.
    Carmigniani, J., Furht, B.: Augmented reality: an overview. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 3–46. Springer, New York (2011). doi: 10.1007/978-1-4614-0064-6_1 CrossRefGoogle Scholar
  5. 5.
    Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors. Matrix 58(15–16), 1–35 (2006)Google Scholar
  6. 6.
    Feiner, S.K.: Augmented reality: a new way of seeing. Sci. Am. 286(4), 48–55 (2002)CrossRefGoogle Scholar
  7. 7.
    Fiala, M.: ARTag, a fiducial marker system using digital techniques. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 590–596. IEEE (2005)Google Scholar
  8. 8.
    Fritz, F., Susperregui, A., Linaza, M.T.: Enhancing cultural tourism experiences with augmented reality technologies. In: Proceedings of the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST) (2005)Google Scholar
  9. 9.
    Fuchs, H., Livingston, M.A., Raskar, R., Colucci, D., Keller, K., State, A., Crawford, J.R., Rademacher, P., Drake, S.H., Meyer, A.A.: Augmented reality visualization for laparoscopic surgery. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 934–943. Springer, Heidelberg (1998). doi: 10.1007/BFb0056282 CrossRefGoogle Scholar
  10. 10.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Labs Tech. J. 29(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)CrossRefGoogle Scholar
  12. 12.
    Ivanova, A., Ivanova, G.: Net-generation learning style: a challenge for higher education. In: Proceedings of the International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, p. 72. ACM (2009)Google Scholar
  13. 13.
    Kato, H., Tan, K.T.: Pervasive 2d barcodes for camera phone applications. IEEE Pervasive Comput. 6(4), 76–85 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, K.: Augmented reality in education and training. TechTrends 56(2), 13–21 (2012)CrossRefGoogle Scholar
  15. 15.
    Livingston, M.A., Rosenblum, L.J., Julier, S.J., Brown, D., Baillot, Y., Swan, I., Gabbard, J.L., Hix, D., et al.: An augmented reality system for military operations in urban terrain. Technical report, DTIC Document (2002)Google Scholar
  16. 16.
    Oliver, M., Trigwell, K.: Can blended learning be redeemed? E-learn. Digit. Media 2(1), 17–26 (2005)CrossRefGoogle Scholar
  17. 17.
    Bradski, G., Kaebler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, California (2008)Google Scholar
  18. 18.
    Palmer, R.C., Eng, P.: The Bar Code Book: A Comprehensive Guide to Reading, Printing, Specifying. Evaluating and Using Bar Code and Other Machine-readable Symbols. Trafford Publishing (2007)Google Scholar
  19. 19.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Siltanen, S.: Theory and applications of marker-based augmented reality (2012). http://www.vtt.fi/inf/pdf/science/2012/S3.pdf
  21. 21.
    Sturm, P.: Pinhole camera model. In: Ikeuchi, K. (ed.) Computer Vision, pp. 610–613. Springer, New York (2014). doi: 10.1007/978-0-387-31439-6_472 CrossRefGoogle Scholar
  22. 22.
    Sutherland, I.E.: A head-mounted three dimensional display. In: Proceedings of the Fall Joint Computer Conference, Part I, 9–11 December 1968, pp. 757–764. ACM (1968)Google Scholar
  23. 23.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media, Heidelberg (2010)zbMATHGoogle Scholar
  24. 24.
    Tikanmäki, A., Röning, J.: Markers-toward general purpose information representation. In: IROS 2011 Workshop: Knowledge Representation for Autonomous Robots (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Auckland University of TechnologyAucklandNew Zealand

Personalised recommendations