Skip to main content

The REVERB Challenge: A Benchmark Task for Reverberation-Robust ASR Techniques

  • Chapter
  • First Online:
New Era for Robust Speech Recognition

Abstract

The REVERB challenge is a benchmark task designed to evaluate reverberation-robust automatic speech recognition techniques under various conditions. A particular novelty of the REVERB challenge database is that it comprises both real reverberant speech recordings and simulated reverberant speech, both of which include tasks to evaluate techniques for 1-, 2-, and 8-microphone situations. In this chapter, we describe the problem of reverberation and characteristics of the REVERB challenge data, and finally briefly introduce some results and findings useful for reverberant speech processing in the current deep-neural-network era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker, J., Vincent, E., Ma, N., Christensen, C., Green, P.: The PASCAL CHiME speech separation and recognition challenge. Comput. Speech Lang. 27(3), 621–633 (2013)

    Article  Google Scholar 

  2. Delcroix, M., Yoshioka, T., Ogawa, A., Kubo, Y., Fujimoto, M., Nobutaka, I., Kinoshita, K., Espi, M., Araki, S., Hori, T., Nakatani, T.: Strategies for distant speech recognition in reverberant environments. Comput. Speech Lang. (2015). doi:10.1186/s13634-015-0245-7

    Google Scholar 

  3. Giri, R., Seltzer, M., Droppo, J., Yu, D.: Improving speech recognition in reverberation using a room-aware deep neural network and multi-task learning. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5014–5018 (2015)

    Google Scholar 

  4. Huang, X., Acero, A., Hong, H.W.: Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Prentice Hall, Upper Suddle River, NJ (2001)

    Google Scholar 

  5. Kaldi-based baseline system for REVERB challenge. https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb

  6. Kinoshita, K., Delcroix, M., Yoshioka, T., Nakatani, T., Habets, E., Haeb-Umbach, R., Leutnant, V., Sehr, A., Kellermann, W., Maas, R., Gannot, S., Raj, B.: The REVERB challenge: a common evaluation framework for dereverberation and recognition of reverberant speech. In: Proceedings of Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2013)

    Google Scholar 

  7. Kinoshita, K., Delcroix, M., Gannot, S., Habets, E., Haeb-Umbach, R., Kellermann, W., Leutnant, V., Maas, R., Nakatani, T., Raj, B., Sehr, A., Yoshioka, T.: A summary of the REVERB challenge: state-of-the-art and remaining challenges in reverberant speech processing research. EURASIP J. Adv. Signal Process. (2016). doi:10.1186/s13634-016-0306-6

    Google Scholar 

  8. LDC: Multi-channel WSJ audio. https://catalog.ldc.upenn.edu/LDC2014S03

  9. LDC: WSJCAMO Cambridge read news. https://catalog.ldc.upenn.edu/LDC95S24

  10. Lincoln, M., McCowan, I., Vepa, J., Maganti, H.K.: The multi-channel Wall Street Journal audio visual corpus (MC-WSJ-AV): specification and initial experiments. In: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 357–362 (2005)

    Google Scholar 

  11. Naylor, P.A., Gaubitch, N.D.: Speech Dereverberation. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  12. Pearce, D., Hirsch, H.G.: The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions. In: Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 29–32 (2000)

    Google Scholar 

  13. REVERB Challenge. http://reverb2014.dereverberation.com/

  14. Robinson, T., Fransen, J., Pye, D., Foote, J., Renals, S.: WSJCAM0: a British English speech corpus for large vocabulary continuous speech recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 81–84 (1995)

    Google Scholar 

  15. Tachioka, Y., Narita, T., Weninger, F.J., Watanabe, S.: Dual system combination approach for various reverberant environments with dereverberation techniques. In: Proceedings of REVERB Challenge Workshop, p. 1.3 (2014)

    Google Scholar 

  16. Tashev, I.: Sound Capture and Processing. Wiley, Hoboken, NJ (2009)

    Book  Google Scholar 

  17. Vincent, E., Araki, S., Theis, F.J., Nolte, G., Bofill, P., Sawada, H., Ozerov, A., Gowreesunker, B.V., Lutter, D.: The signal separation evaluation campaign (2007–2010): achievements and remaining challenges. Signal Process. 92, 1928–1936 (2012)

    Article  Google Scholar 

  18. Wölfel, M., McDonough, J.: Distant Speech Recognition. Wiley, Hoboken, NJ (2009)

    Book  Google Scholar 

  19. Yoshioka, T., Sehr, A., Delcroix, M., Kinoshita, K., Maas, R., Nakatani, T., Kellermann, W.: Making machines understand us in reverberant rooms: robustness against reverberation for automatic speech recognition. IEEE Signal Process. Mag. 29(6), 114–126 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kinoshita, K. et al. (2017). The REVERB Challenge: A Benchmark Task for Reverberation-Robust ASR Techniques. In: Watanabe, S., Delcroix, M., Metze, F., Hershey, J. (eds) New Era for Robust Speech Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-64680-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64680-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64679-4

  • Online ISBN: 978-3-319-64680-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics