Advertisement

Big Data in the Public Sector. Linking Cities to Sensors

  • Marianne FraefelEmail author
  • Stephan Haller
  • Adrian Gschwend
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10428)

Abstract

In the public sector, big data holds many promises for improving policy outcomes in terms of service delivery and decision-making and is starting to gain increased attention by governments. Cities are collecting large amounts of data from traditional sources such as registries and surveys and from non-traditional sources such as the Internet of Things, and are considered an important field of experimentation to generate public value with big data. The establishment of a city data infrastructure can drive such a development. This paper describes two key challenges for such an infrastructure: platform federation and data quality, and how these challenges are addressed in the ongoing research project CPaaS.io.

Keywords

Big data Internet of things Open government data Linked data Public sector Smart city Data quality Platform federation 

Notes

Acknowledgements

This work is supported by the Horizon 2020 EUJ-02-2016 Research and Innovation Action CPaaS.io; EU Grant number 723076, NICT management number 18302.

References

  1. 1.
    European Commission: Building a European Data Economy (2017). http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41205
  2. 2.
  3. 3.
    Walser, K., Haller, S.: Smart governance in smart cities. In: Meier, A., Portmann, E. (eds.) Smart City. EH, pp. 19–46. Springer, Wiesbaden (2016). doi: 10.1007/978-3-658-15617-6_2 CrossRefGoogle Scholar
  4. 4.
    Vega-Gorgojo, et al.: Case Study Reports on Positive and Negative Externalities (2015). http://byte-project.eu/wp-content/uploads/2015/06/FINAL_BYTE-D3-2-Case-studies-report-1-1.pdf
  5. 5.
    NIST Big Data Public Working Group: NIST Big Data Interoperability Framework: Volume 1, Definitions (2015). http://dx.doi.org/10.6028/NIST.SP.1500-1
  6. 6.
    Curry, E.: The big data value chain: definitions, concepts, and theoretical approaches. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 29–37. Springer, Cham (2016). doi: 10.1007/978-3-319-21569-3_3 CrossRefGoogle Scholar
  7. 7.
    Munné, R.: Big data in the public sector. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 195–208. Springer, Cham (2016). doi: 10.1007/978-3-319-21569-3_11 CrossRefGoogle Scholar
  8. 8.
    Klievink, B., Romijn, B.-J., Cunningham, S., de Bruijn, H.: Big data in the public sector. Uncertainties and readiness. Inf. Syst. Front. 1–17 (2016)Google Scholar
  9. 9.
    Desouza, K.C., Jacob, B.: Big data in the public sector: lessons for practitioners and scholars. Adm. Soc. 1–22 (2014)Google Scholar
  10. 10.
    Gaardboe, R., Svarre, T., Kanstrup, A.M.: Characteristics of business intelligence and big data in e-government: preliminary findings. In: Tambouris, E., et al. (eds.) Electronic Government and Electronic Participation, pp. 109–115. IOS Press, Amsterdam (2015)Google Scholar
  11. 11.
    Akoka, J., Comyn-Wattiau, I., Laoufi, N.: Research on big data—a systematic mapping study. Comput. Stand. Interfaces (2017). doi: 10.1016/j.csi.2017.01.004 Google Scholar
  12. 12.
    OECD: Exploring Data-Driven Innovation as a New Source of Growth: Mapping the Policy Issues Raised by “Big Data”. OECD, Paris (2013). doi: 10.1787/5k47zw3fcp43-en CrossRefGoogle Scholar
  13. 13.
    Manyika, J., et al.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, New York City (2011)Google Scholar
  14. 14.
    Carrara, W., et al.: Analytical Report 1: Digital Transformation and Open Data (2015). https://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n1_-_digital_transformation.pdf
  15. 15.
  16. 16.
    Poel, M., Schroeder, et al.: Data for policy: a study of big data and other innovative data-driven approaches for evidence-informed policymaking. Report about the State-of-the-Art (2015). http://media.wix.com/ugd/c04ef4_cee7fd39eed342beb059526226e6a86e.pdf
  17. 17.
    Aggarwal, A.: Opportunities and challenges of big data in public sector. In: Aggarwal, A. (ed.) Managing Big Data Integration in the Public Sector, pp. 289–301. IGI Global, Hershey (2016)CrossRefGoogle Scholar
  18. 18.
    Chen, Y.-C., Hsieh, T.-C.: Big data for digital government: opportunities, challenges, and strategies. Int. J. Public Adm. Digit. Age 1, 1–14 (2014)Google Scholar
  19. 19.
    Höchtl, J., Parycek, P., Schöllhammer, R.: Big data in the policy cycle. Policy decision making in the digital era. J. Organ. Comput. Electron. Commer. 26(1–2), 147–169 (2015)Google Scholar
  20. 20.
    Eckert, K.-P., Henckel, L., Hoepner, P.: Big data—Ungehobene Schätze oder digitaler Alptraum (2014). https://www.oeffentliche-it.de/documents/10181/14412/Big+Data+ungehobene+Schätze+oder+digitaler+Albtraum
  21. 21.
  22. 22.
    Castelnovo, W., Misuraca, G., Savoldelli, A.: Smart cities governance. The need for a holistic approach to assessing urban participatory policy making. Soc. Sci. Comput. Rev. 34(6), 724–739 (2016)CrossRefGoogle Scholar
  23. 23.
    Hashem, I.A.T., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5), 748–758 (2016)CrossRefGoogle Scholar
  24. 24.
    Domingue, J., Lasierra, N., Fensel, A., Kasteren, T., Strohbach, M., Thalhammer, A.: Big data analysis. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 63–86. Springer, Cham (2016). doi: 10.1007/978-3-319-21569-3_5 CrossRefGoogle Scholar
  25. 25.
    OECD: Data-Driven Innovation: Big Data for Growth and Well-Being. OECD Publishing, Paris (2015)Google Scholar
  26. 26.
    Scuotto, V., Ferraris, A., Bresciani, S.: Internet of Things: Applications and challenges in smart cities. Bus. Process Manag. J. 22(2), 357–367 (2016)CrossRefGoogle Scholar
  27. 27.
    Janssen, M., Estevez, E., Janowski, T.: Interoperability in big, open, and linked data—organizational maturity, capabilities, and data portfolios. Computer 47(10), 44–49 (2014)CrossRefGoogle Scholar
  28. 28.
    Merino, J., et al.: A data quality in use model for big data. Future Gener. Comput. Syst. 63, 123–130 (2016)CrossRefGoogle Scholar
  29. 29.
    Fürber, C.: Data Quality Management with Semantic Technologies. Springer, Wiesbaden (2016)CrossRefGoogle Scholar
  30. 30.
    Bertot, J.C., Choi, H.: Big data and e-Government: issues, policies, and recommendations. In: Proceedings of the 14th Annual International Conference on Digital Government Research (dg.o 2013), pp. 1–10. ACM, New York (2013)Google Scholar
  31. 31.
    Otto, B.: Organizing data governance: findings from the telecommunications industry and consequences for large service providers. Commun. Assoc. Inf. Syst. 29(1), 3 (2011)Google Scholar
  32. 32.
    Zaveri, A., et al.: Quality assessment for linked data: a survey. Semant. Web J (2015). http://www.semantic-web-journal.net/content/quality-assessment-linked-data-survey
  33. 33.
    Karkouch, A., et al.: Data quality in Internet of Things. A state-of-the-art survey. J. Netw. Comput. Appl. 73, 57–81 (2016)CrossRefGoogle Scholar
  34. 34.
    European Commission: Commission Staff Working Document. Advancing the Internet of Things in Europe (2016). http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=15276
  35. 35.
    Becker, T.: Big data usage. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 143–165. Springer, Cham (2016). doi: 10.1007/978-3-319-21569-3_8 CrossRefGoogle Scholar
  36. 36.
    Batini, C., Scannapieco, M.: Methodologies for information quality assessment and improvement. In: Batini, C., Scannapieco, M. (eds.) Data and Information Quality. DSA, pp. 353–402. Springer, Cham (2016). doi: 10.1007/978-3-319-24106-7_12 CrossRefGoogle Scholar
  37. 37.
    Vetrò, A., et al.: Open data quality measurement framework: definition and application to Open Government Data. Gov. Inf. Q. 33(2), 325–337 (2016)CrossRefGoogle Scholar
  38. 38.
    W3C: Data on the Web Best Practices. W3C Recommendation 31 January 2017 (2017). http://www.w3.org/TR/dwbp/
  39. 39.
    Shiri, A.: Linked data meets big data: a knowledge organization systems perspective. Adv. Classif. Res. Online 24(1), 16–20 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Databases 13(9), 1–28 (2015)Google Scholar
  41. 41.
    Hierro, J.: FIWARE: An Open Standard Platform for Smart Cities (2014). http://www.slideshare.net/JuanjoHierro/fiware-a-standard-platform-for-smart-cities
  42. 42.
    Sakamura, K.: Open IoT Platform & IoT-Engine (2016). https://www.tron.org/wp-content/uploads

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Bern University of Applied SciencesBernSwitzerland

Personalised recommendations