Skip to main content

Combining Data from Vision and Odometry Systems for More Accurate Control of Mobile Robot

  • Chapter
  • First Online:
Advanced Technologies in Practical Applications for National Security

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 106))

Abstract

This paper describes control algorithms implemented in the experimental mobile robot. Presented solution based on combining data from vision and odometry systems. It is assumed that general motion planning is performed by the master control system, and only some basic tasks are realized by the robot itself. The powerful microcontroller is able to realize more complicated control algorithms locally on the robot, so the master system can focus on more challenging tasks. The reactive algorithms based on odometry and vision systems is realized by the on-board system, they can react much faster than it would be, if current encoder readings was sent to the master system, and decision was taken there. The proposed solution also allows to avoid sliding when desired speed changes stepwisely, it changes the real speed smoothly. Since most of tasks need knowledge about robot position and/or orientation, the algorithms that allow to estimate robot’s pose are also described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K-Team. (2015). Website of the K-team mobile robotics. http://www.k-team.com.

  2. Barrientos, A., Vidal, J., Quesada, E., Oliver, J., Macotela, F., & Dominguez, M. (2013). Design and construction of mini-robot for gas LP detection using a mobile device. Latin America Transactions, IEEE (Revista IEEE America Latina), 11, 1295–1300.

    Article  Google Scholar 

  3. Barrios-Aranibar, D., & Alsina, P. J. (2007). Imitation learning, an application in a micro robot soccer game. In Mobile robots, the evolutionary approach, Studies in computational intelligence, ch. 10 (pp. 201–219). Berlin: Springer.

    Google Scholar 

  4. Jaskot, K., & Łakota, T. (2016). Experimental mobile robot—Hardware. In Innovative simulation systems, studies in systems, decision and control, ch. 15 (Vol. 33, pp. 277–289). Springer.

    Google Scholar 

  5. Jaskot, K., & Łakota, T. (2016). Experimental mobile robot-software. In Innovative simulation systems, studies in systems, decision and control, ch. 15 (Vol. 33, pp. 303–316). Springer.

    Google Scholar 

  6. Skrzypczyński, P. (2005). Uncertainty models of vision sensors in mobile robot positioning. Int. J. Appl. Math. Comput. Sci., 15, 73–88.

    MATH  Google Scholar 

  7. Babiarz, A., Bieda, R., & Jaskot, K. (2013). A distributed control group of mobile robots in a limited area with a vision system. In Vision based systems for UAV applications, Studies in computational intelligence, ch. 10 (pp. 157–175). Springer.

    Google Scholar 

  8. Switonski, A., Josinski, H., Jedrasiak, K., Polanski, A., & Wojciechowski, K. (2010). Classification of poses and movement phases. Lecture Notes in Computer Science.

    Google Scholar 

  9. Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., & Nawrat, A. (2015). Real-time laser point tracking. In International Conference on Computer Vision and Graphics, pp. 542–551.

    Google Scholar 

  10. Sobel, D., Jedrasiak, K., Daniec, K., Wrona, J., Jurgas, P., & Nawrat, A. (2014). Camera calibration for tracked vehicles augmented reality applications. In Innovative control systems for tracked vehicle platforms (pp. 147–162).

    Google Scholar 

  11. Nawrat, A., & Jedrasiak, K. (2008). Fast colour recognition algorithm for robotics. Problemy Eksploatacji (pp. 69–76).

    Google Scholar 

  12. Daniec, K., Iwaneczko, P., Jedrasiak, K., & Nawrat, A. (2013). Prototyping the autonomous flight algorithms using the prepar3D® simulator. In Vision based systems for UAV applications (pp. 219–232).

    Google Scholar 

  13. Laumond, J.-P. (1998). Robot motion planning and control (Lecture notes in control and information sciences). Springer.

    Google Scholar 

  14. Borenstein, J., Everett, H. R., & Feng, L. (1996). Where am I?: Sensors and methods for mobile robot positioning. Technical report, University of Michigan.

    Google Scholar 

  15. Ward, C. C., Iagnemma, K. (2007). Model-based wheel slip detection for outdoor mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, 2007, Roma, Italy, pp. 2724–2729.

    Google Scholar 

  16. Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J., & Rodriguez, F. (2009). Adaptive control for a mobile robot under slip conditions using an LMI-based approach. In Proceedings of the European Control Conference, 2009, Budapest, Hungary, pp. 1251–1256.

    Google Scholar 

  17. Yu, T., & Nilanjan, S. (2014). Control of a mobile robot subject to wheel slip. Journal of Intelligent & Robotic Systems, 74, 915–929.

    Article  Google Scholar 

  18. Topalov, A. V. (2011). Recent advances in mobile robotics. InTech.

    Google Scholar 

  19. Amitava, C., Anjan, R., & Nirmal, S. N. (2013). Mobile robot navigation. In Vision based autonomous robot navigation, Studies in computational intelligence, ch. 1 (pp. 1–20). Berlin: Springer.

    Google Scholar 

  20. Babiarz, A., Bieda, R., & Jaskot, K. (2013). Vision system for group of mobile robots. In: Vision based systems for UAV applications, Studies in computational intelligence, ch. 9 (pp. 129–156). Springer.

    Google Scholar 

  21. Bereska, D., Daniec, K., Jedrasiak, K., & Nawrat, A. (2013). Gyro-stabilized platform for multispectral image acquisition. Vision based systems for UAV applications (pp. 115–121).

    Google Scholar 

  22. Åström, K. J., & Hägglund, T. (2004). Revisiting the Ziegler-Nichols step response method for PID control. Journal of Process Control, 14, 635–650.

    Article  Google Scholar 

  23. Gessing, R. (2004). Control fundamentals. Silesian University of Technology.

    Google Scholar 

  24. Åström, K. J., & Hägglund, T. (2006). Advanced PID control. ISA—The Instrumentation: Systems, and Automation Society.

    Google Scholar 

  25. Segovia, V. R., Hägglund, T., & Åström, K. J. (2014). Measurement noise filtering for PID controllers. Journal of Process Control, 24, 299–313.

    Article  Google Scholar 

  26. Segovia, V. R., Hägglund, T., & Åström, K. J. (2014). Measurement noise filtering for common PID tuning rules. Control Engineering Practice, 32, 43–63.

    Article  Google Scholar 

  27. Khan, H., Iqbal, J., Baizid, K., & Zielińska, T. (2015). Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Frontiers of Information Technology & Electronic Engineering, 16, 166–172.

    Article  Google Scholar 

  28. Takeuchi, M., Ikeda, T., & Minami, M. (2002). Modeling of a mobile robot including slipping of carrying objects. In Proceedings of the 41st SICE Annual Conference, 2002, Osaka, Japan, pp. 2412–2417.

    Google Scholar 

  29. Halliday, D., Resnick, R., & Walker, J. (2014). Fundamentals of physics extended (10th ed.). Wiley.

    Google Scholar 

  30. Ostafew, C. J., Schoellig, A. P., Barfoot, T. D., & Collier, J. (2014). Speed daemon: Experience-based mobile robot speed scheduling. In Canadian Conference on Computer and Robot Vision, 2014, Montreal, Canada, pp. 56–62.

    Google Scholar 

  31. Ruiz, U., Marroquin, J. L., & Murrieta-Cid, R. (2014). Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance. International Journal of Applied Mathematics and Computer Science, 24, 371–385.

    Article  MathSciNet  MATH  Google Scholar 

  32. Jaskot, K., & Knapik, K. (2014). Building the environment map using the group of mobile robots. Przegląd Elektrotechniczny, 12, 30–39.

    Google Scholar 

  33. Babioch, K., & Jaskot, K. (2015). Inspection robot. Przegląd Elektrotechniczny, 1, 55–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Jaskot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bieda, R., Jaskot, K., Łakota, T., Jȩdrasiak, K. (2018). Combining Data from Vision and Odometry Systems for More Accurate Control of Mobile Robot. In: Nawrat, A., Bereska, D., Jędrasiak, K. (eds) Advanced Technologies in Practical Applications for National Security. Studies in Systems, Decision and Control, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-64674-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64674-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64673-2

  • Online ISBN: 978-3-319-64674-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics