Probabilities of Voting Paradoxes

  • William V. Gehrlein
  • Dominique Lepelley
Part of the Studies in Choice and Welfare book series (WELFARE)


A thorough discussion is presented for four basic models [Impartial Culture, Dual Culture, Uniform Culture and Impartial Anonymous Culture] that form the basis of the classical analysis for developing theoretical estimates of the likelihood that voting paradoxes might be observed. It is explained why each of these models is expected to produce exaggerated estimates of these probabilities. But, given that fact, relatively small estimates are still obtained for the probabilities that these paradoxical outcomes are observed. It is also shown that by comparing these models, we are able to determine the pure impact of varying specific characteristics for preferences of electorates without changing any other factors. For example, adding a degree of dependence among voters’ preferences will reduce the probability of observing paradoxes and changing the degree of homogeneity among voters’ preferences will also predictably alter their likelihoods.


  1. Berg, S. (1985). Paradox of voting under an urn model: The effect of homogeneity. Public Choice, 47, 377–387.CrossRefGoogle Scholar
  2. Brams, S. J., & Fishburn, P. C. (1983). Approval voting. Boston: Birkhäuser Publishers.Google Scholar
  3. Cervone, D., Gehrlein, W. V., & Zwicker, W. (2005). Which scoring rule maximizes Condorcet efficiency under IAC? Theory and Decision, 58, 145–185.CrossRefGoogle Scholar
  4. De Mouzon, O., Laurent, T., Le Breton, M., & Lepelley, D. (2016). The probability of a divided verdict in a U.S. presidential type election. Toulouse School of Economics Working Paper.Google Scholar
  5. Diss, M., & Gehrlein, W. V. (2012). Borda’s Paradox and weighted scoring rules. Social Choice and Welfare, 38, 121–136.CrossRefGoogle Scholar
  6. Feix, M. R., & Rouet, J. L. (1999). Un espace des phases électoral et les statistiques quantiques. Ecole des Mines de Nantes, unpublished manuscript.Google Scholar
  7. Feix, M., Lepelley, D., Merlin, V., & Rouet, J. L. (2004). The probability of conflict in a U.S. presidential type election. Economic Theory, 23, 227–258.CrossRefGoogle Scholar
  8. Fishburn, P. C., & Gehrlein, W. V. (1980). Social homogeneity and Condorcet’s paradox. Public Choice, 35, 403–420.CrossRefGoogle Scholar
  9. Gehrlein, W. V. (1981). The expected probability of Condorcet’s paradox. Economics Letters, 7, 33–37.CrossRefGoogle Scholar
  10. Gehrlein, W. V. (1999). The Condorcet efficiency of Borda Rule under the Dual Culture Condition. Social Science Research, 28, 36–44.CrossRefGoogle Scholar
  11. Gehrlein, W. V., & Fishburn, P. C. (1976). Condorcet’s paradox and anonymous preference profiles. Public Choice, 26, 1–18.CrossRefGoogle Scholar
  12. Gehrlein, W. V., & Fishburn, P. C. (1978). Coincidence probabilities for simple majority and positional voting rules. Social Science Research, 7, 272–283.CrossRefGoogle Scholar
  13. Gehrlein, W. V., & Lepelley, D. (2004). Probability calculations in voting theory: An overview of recent results. In M. Wiberg (Ed.), Reasoned choices: Essays in honor of Hannu Nurmi (pp. 140–160). Turku, Finland: The Finnish Political Science Association.Google Scholar
  14. Gehrlein, W. V., & Lepelley, D. (2009, August 18). A note on Condorcet’s other paradox. Economics Bulletin, 29.Google Scholar
  15. Gehrlein, W. V., & Lepelley, D. (2011a). The Value of Research Based on Simple Assumptions about Voters’ Preferences. In Felsenthal & Machover (Eds.), Electoral Systems: Paradoxes, Assumptions and Procedures (pp. 171–199). Berlin: Springer Publishing.Google Scholar
  16. Gehrlein, W. V., & Lepelley, D. (2011b). Voting paradoxes and group coherence: The Condorcet efficiency of voting rules. Berlin: Springer.CrossRefGoogle Scholar
  17. Gehrlein, W. V., & Merlin, V. (2009a). On the probability of the Ostrogorski Paradox.
  18. Gehrlein, W. V., & Merlin, V. (2009b). The probability of the Majority Paradox.
  19. Gehrlein, W. V., & Roy, S. (2014). The structure of voters’ preferences induced by the Dual Culture Condition. In Fara, Leech, & Salles (Eds.), Voting power and paradoxes: Essays in honour of Dan Felsenthal and Moshé Machover (pp. 347–361). Berlin: Springer Publishers.Google Scholar
  20. Gehrlein, W. V., Lepelley, D., & Plassmann, F. (2016). Should voters be required to rank candidates in an election? Social Choice and Welfare, 46, 707–747.CrossRefGoogle Scholar
  21. Gehrlein, W. V., Le Breton, M., & Lepelley, D. (2017). The likelihood of a Condorcet Winner in the logrolling setting. Social Choice and Welfare, 49, 315–327.Google Scholar
  22. Guilbaud, G. T. (1952). Les théories de l'intérêt général et le problème logique de l'agrégation. Economie Appliquée, 5, 501–584.Google Scholar
  23. Johnson, N. L., & Kotz, S. (1977). Urn models and their application. New York: Wiley.Google Scholar
  24. Lepelley, D., & Merlin, V. (2001). Scoring run-off paradoxes for variable electorates. Economic Theory, 17, 53–80.CrossRefGoogle Scholar
  25. Lepelley, D., Merlin, V., & Rouet, J. L. (2011). Three ways to compute accurately the referendum paradox probability. Mathematical Social Sciences, 62, 28–33.CrossRefGoogle Scholar
  26. May, K. (1948). Probability of certain election results. American Mathematical Monthly, 55, 203–209.CrossRefGoogle Scholar
  27. McIntee, T. J., & Sari, D. G. (2017). Likelihood of voting outcomes with generalized IAC probabilities. Mathematical Social Sciences, 87, 1–10.CrossRefGoogle Scholar
  28. Merlin, V., Tataru, M., & Valognes, F. (2002). On the likelihood of Condorcet’s profiles. Social Choice and Welfare, 19, 193–206.CrossRefGoogle Scholar
  29. Regenwetter, M., Grofman, B., & Marley, A. A. J. (2002). On the model dependence of majority preference relations reconstructed from ballot or survey data. Mathematical Social Sciences, 43, 451–466.CrossRefGoogle Scholar
  30. Regenwetter, M., Grofman, B., Marley, A., & Tsetlin, I. (2006). Behavioral social choice. Cambridge: Cambridge University Press.Google Scholar
  31. Sen, A. K. (1970). Collective choice and social welfare. San Francisco, CA: Holden-Day.Google Scholar
  32. Tideman, T. N., & Plassmann, F. (2014). Developing the aggregate empirical side of computational social choice. Annals of Mathematics and Artificial Intelligence, 68, 31–64.CrossRefGoogle Scholar
  33. Wilson, M. C., & Pritchard, G. (2007). Probability calculations under the IAC hypothesis. Mathematical Social Sciences, 54, 244–256.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • William V. Gehrlein
    • 1
  • Dominique Lepelley
    • 2
  1. 1.Department of Business AdministrationUniversity of DelawareNewarkUSA
  2. 2.University of La RéunionSaint-Denis, Ile de La RéunionFrance

Personalised recommendations