Skip to main content

On the Construction of Side-Channel Attack Resilient S-boxes

Part of the Lecture Notes in Computer Science book series (LNSC,volume 10348)

Abstract

Side-channel attacks exploit physical characteristics of implementations of cryptographic algorithms in order to extract sensitive information such as the secret key. These physical attacks are among the most powerful attacks against real-world crypto-systems. In recent years, there has been a number of proposals how to increase the resilience of ciphers against side-channel attacks. One class of proposals concentrates on the intrinsic resilience of ciphers and more precisely their S-boxes. A number of properties has been proposed such as the transparency order, the confusion coefficient and the modified transparency order. Although results with those properties confirm that they are (to some extent) related with the S-box resilience, there is still much to be investigated. There, the biggest drawback stems from the fact that even S-boxes with the best possible values of those properties have only slightly improved side-channel resistance. In this paper, we propose to construct small sized S-boxes based on the results of the measurements of the actual physical attacks. More precisely, we model our S-boxes to be as resilient as possible against non-profiled and profiled physical attacks. Our results highlight that we can design \(4\times 4\) and \(5\times 5\) S-boxes that possess increased resistance against various real-world attacks.

Keywords

  • S-box construction
  • Lightweight cryptography
  • Genetic algorithms
  • Side-channel analysis
  • Correlation power analysis
  • Template attacks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-64647-3_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-64647-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    \((2^n)!\) if we only consider permutations.

  2. 2.

    Note that in general case of a fitness function it is possible to sacrifice one parameter in order to boost another. However, in our case it is impossible to sacrifice the nonlinearity \(N_{F}\) in order to improve the success rate due to the fact that \(N_{F} \in \mathbb {N}\) and \(\mathsf {SR} \in \mathbb {R}\) and \(0< \mathsf {SR} < 1\). In other words the minimal step in values of \(N_{F}\) is 1, while 1 is the maximum increase that the \(\mathsf {SR}\) can get, thus, the whole \(\mathsf {fitness}\) will decrease if \(N_{F}\) decreases while boosting the \(\mathsf {SR}\).

  3. 3.

    A small amount of noise is necessary in order to avoid numerical issues during template attacks.

References

  1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems [32], pp. 104–113

    Google Scholar 

  2. Picek, S., Batina, L., Jakobovic, D.: Evolving DPA-resistant Boolean functions. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 812–821. Springer, Cham (2014). doi:10.1007/978-3-319-10762-2_80

    Google Scholar 

  3. Picek, S., Papagiannopoulos, K., Ege, B., Batina, L., Jakobovic, D.: Confused by confusion: systematic evaluation of DPA resistance of various S-boxes. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 374–390. Springer, Cham (2014). doi:10.1007/978-3-319-13039-2_22

    Google Scholar 

  4. Picek, S., Mazumdar, B., Mukhopadhyay, D., Batina, L.: Modified transparency order property: solution or just another attempt. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 210–227. Springer, Cham (2015). doi:10.1007/978-3-319-24126-5_13

    CrossRef  Google Scholar 

  5. Young, A.L., Yung, M.: The Dark Side of “Black-Box” Cryptography, or: Should We Trust Capstone? [32], pp. 89–103

    Google Scholar 

  6. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, 1st edn, pp. 257–397. Cambridge University Press, New York (2010)

    CrossRef  Google Scholar 

  7. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, 1st edn, pp. 398–469. Cambridge University Press, New York (2010)

    CrossRef  Google Scholar 

  8. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73074-3_13

    CrossRef  Google Scholar 

  9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_14

    CrossRef  Google Scholar 

  10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_19

    CrossRef  Google Scholar 

  11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon: CAESAR submission (2014). http://ascon.iaik.tugraz.at/

  12. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1 Submission to the CAESAR Competition (2014). http://competitions.cr.yp.to/round1/primatesv1.pdf

  13. Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). doi:10.1007/3-540-45472-1_12

    CrossRef  Google Scholar 

  14. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_3

    CrossRef  Google Scholar 

  15. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff, E.: Redefining the transparency order. In: WCC2015-9th International Workshop on Coding and Cryptography 2015 (2015)

    Google Scholar 

  16. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 233–250. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_14

    CrossRef  Google Scholar 

  17. Fei, Y., Ding, A.A., Lao, J., Zhang, L.: A statistics-based success rate model for DPA and CPA. J. Cryptographic Eng. 5(4), 227–243 (2015)

    CrossRef  Google Scholar 

  18. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_26

    CrossRef  Google Scholar 

  19. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25286-0_1

    CrossRef  Google Scholar 

  20. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31

    CrossRef  Google Scholar 

  21. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference Submission to NIST(Round 3) (2011)

    Google Scholar 

  22. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B., Mouha, N., Yasuda, K., Wang, Q.: PRIMATEs v1.02: CAESAR submission, September 2014

    Google Scholar 

  23. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin, Heidelberg, New York (2003)

    CrossRef  MATH  Google Scholar 

  24. Lerman, L., Markowitch, O., Veshchikov, N.: Comparing sboxes of ciphers from the perspective of side-channel attacks. In: 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), 1–6 December 2016

    Google Scholar 

  25. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4_2

    CrossRef  Google Scholar 

  26. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). doi:10.1007/11545262_3

    CrossRef  Google Scholar 

  27. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_27

    CrossRef  Google Scholar 

  28. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Second International Workshop on Constructive Side Channel Analysis and Secure Design, Center for Advanced Security Research Darmstadt, pp. 29–41 (2011)

    Google Scholar 

  29. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptograph. Eng. 1(4), 293–302 (2011)

    CrossRef  Google Scholar 

  30. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. IJACT 3(2), 97–115 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7_11

    CrossRef  Google Scholar 

  32. Koblitz, N. (ed.): Proceedings of 16th Annual International Cryptology Conference Advances in Cryptology - CRYPTO 1996, Santa Barbara, California, USA, 18–22 August 1996. LNCS, vol. 1109. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Acknowledgments

L. Lerman is funded by the Brussels Institute for Research and Innovation (Innoviris) for the SCAUT project. S. Picek was supported in part by Croatian Science Foundation under the project IP-2014-09-4882.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Veshchikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lerman, L., Veshchikov, N., Picek, S., Markowitch, O. (2017). On the Construction of Side-Channel Attack Resilient S-boxes. In: Guilley, S. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2017. Lecture Notes in Computer Science(), vol 10348. Springer, Cham. https://doi.org/10.1007/978-3-319-64647-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64647-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64646-6

  • Online ISBN: 978-3-319-64647-3

  • eBook Packages: Computer ScienceComputer Science (R0)