Skip to main content

About Nonlinear Behavior of Unidirectional Plant Fibre Composite

  • Conference paper
  • First Online:
Advances in Natural Fibre Composites

Abstract

At room condition and standard strain rate, unidirectional glass fiber reinforced organic polymers show linear behavior under longitudinal loading (the same with carbon fiber). Oppositely, plant-based reinforced organic polymers show often nonlinear behavior. We describe a viscoelastoplastic model based on eight independent parameters dedicated to simulation of plant fiber composite mechanical behavior. This model has been previously validated with flax twisted yarn/epoxy composite at room condition. We analyse now an unidirectional flax/epoxy composite at different strain rates to promote a mechanical behaviour with ‘three apparent regions’ visible in case of longitudinal loading. We show that adding of a strengthening phenomenon is a good solution to improve phenomenological model of plant fibre composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poilâne, C., Cherif, Z. E., Richard, F., Vivet, A., Ben Doudou, B., & Chen, J. (2014). Polymer reinforced by flax fibres as a viscoelastoplastic material. Composite Structures, 112, 100.

    Article  Google Scholar 

  2. Oksman, K. (2001). High quality flax fibre composites manufactured by the resin transfer moulding process. Journal of Reinforced Plastics and Composites, 20, 621.

    Article  Google Scholar 

  3. Hughes, J. C., Carpenter, J., & Hill, C. (2007). Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. Journal of Materials Science, 42, 2499.

    Article  Google Scholar 

  4. Scida, D., Assarar, M., Poilâne, C., & Ayad, R. (2013). Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B-Engineering, 48, 51.

    Article  Google Scholar 

  5. Lebrun, G. (2013). Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Composite Structures, 103, 151.

    Article  Google Scholar 

  6. Cherif, Z. E., Poilâne, C., Momayez, L., & Chen, J. (2011). Optimisation d'un pré-imprègnè lin/èpoxy industrie. Revue des Composites et des Matèriaux avancès‘‚ 21, 119–128.

    Google Scholar 

  7. Cherif, Z. E., Poilâne, C, Momayez, L., & Chen, J. (2012). Pré-imprégnés lin/époxy: Influence des paramètres d'èlaboration sur les propriètès mècaniques. Matèriaux & Techniques, 100, 459–466.

    Google Scholar 

  8. Rubio-Lòpez, A., Hoang, T., & Santiuste, C. (2016). Constitutive model to predict the viscoplastic behaviour of natural fibres based composites. Composite Structures, 155, 8.

    Article  Google Scholar 

  9. Shah, D. U. (2016). Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Composite Part A-Applied Science, 83, 160.

    Article  Google Scholar 

  10. Andersons, J., Modniks, J., & Sparnins, E. (2015). Modeling the nonlinear deformation of flax-fiber-reinforced polymer matrix laminates in active loading. Journal of Reinforced Plastics Composites, 34(3), 248.

    Article  Google Scholar 

  11. Chiali, A., Zouari, W., Assarar, M., Kebir, H., & Ayad, R. (2016). Analysis of the mechanical behaviour of flax and glass fabrics-reinforced thermoplastic and thermoset resins. Journal of Reinforced Plastics Composites, 1–16.

    Google Scholar 

  12. Sliseris, J., Yan, L., & Kasal, B. (2016). Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Composites Part B-Engineering, 89, 143.

    Article  Google Scholar 

  13. Halphen, B., & Nguyen, Q. S. (1975). Sur les matériaux standard généralisés. Journal of de Mécanique, 14, 39.

    Google Scholar 

  14. Richard, F. (1999). Identification du comportement et évaluation de la fiabilité des composites stratifiés. Thèse de doctorat: Université de Franche Comté, Besançon, FRANCE.

    Google Scholar 

  15. Richard, F. (1999). MIC2M, modélisation et identification du comportement mécanique non linéaire des matériaux. http://mic2m.univ-fcomte.fr. Accessed 2017-03-17.

  16. Bourmaud, A., Morvan, C., Bouali, A., Placet, V., Perré, P., & Baley, C. (2013). Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products, 44, 343.

    Article  Google Scholar 

  17. Del Masto, A., Trivaudey, F., Guicheret-Retel, V.,Placet, V., & Boubakar, L. (2017). Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. Journal of Materials Science.

    Google Scholar 

  18. Baets, J., Plastria, D., Ivens, J., & Verpoest, I. (2014). Determination of the optimal flax fibre preparation for use in unidirectional flax–epoxy composites. Journal of Reinforced Plastics Composites, 33, 493.

    Article  Google Scholar 

  19. Lineo—Flax Fiber Impregnation. URL http://www.lineo.eu/. Accessed 2016-01-24.

  20. Placet, P. (2009). Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Composites Part A-Applied Science, 40, 1111.

    Article  Google Scholar 

Download references

Acknowledgements

China Scholarship Council (CSC) is acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Poilâne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Poilâne, C., Gehring, F., Yang, H., Richard, F. (2018). About Nonlinear Behavior of Unidirectional Plant Fibre Composite. In: Fangueiro, R., Rana, S. (eds) Advances in Natural Fibre Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-64641-1_7

Download citation

Publish with us

Policies and ethics