Simulation-Based Validation of Smart Grids – Status Quo and Future Research Trends

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10444)


Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.


Co-simulation Cyber-physical energy systems Hardware-in-the-loop Modeling Real-time simulation Smart grids Validation 



This work is supported by the European Communitys Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113).


  1. 1.
    Almas, M.S., Leelaruji, R., Vanfretti, L.: Over-current relay model implementation for real time simulation & Hardware-in-the-Loop (HIL) validation. In: IECON 2012–38th Annual Conference of the IEEE Industrial Electronics Society, pp. 4789–4796 (2012)Google Scholar
  2. 2.
    Andrén, F., Lehfuss, F., Jonke, P., Strasser, T., et al.: DERri common reference model for distributed energy resources - modelling scheme, reference implementations and validation of results. e & i Elektrotech. Informationstechnik 131(8), 378–385 (2014)CrossRefGoogle Scholar
  3. 3.
    Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI. In: 8th International Modelica Conference, pp. 115–120 (2011)Google Scholar
  4. 4.
    Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., Wu, Y.: Real-time co-simulation platform using OPAL-RT and OPNET for analyzing smart grid performance. In: 2015 IEEE Power and Energy Society General Meeting, pp. 1–5 (2015)Google Scholar
  5. 5.
    Bindner, H., Gehrke, O., Lundsager, P., Hansen, J., Cronin, T.: IPSYS - a simulation tool for performance assessment and controller development of integrated power system distributed renewable energy generated and storage. In: European Wind Energy Conference and Exhibition (EWEC), pp. 128–130 (2004)Google Scholar
  6. 6.
    Blochwitz, T., Otter, M., Arnold, M., Bausch, C., et al.: The functional mockup interface for tool independent exchange of simulation models. In: 8th International Modelica Conference, pp. 105–114 (2011)Google Scholar
  7. 7.
    Brück, D., Elmqvist, H., Mattsson, S.E., Olsson, H.: Dymola for multi-engineering modeling and simulation. In: 2nd International Modelica Conference (2002)Google Scholar
  8. 8.
    Davis, J., Galicia, R., Goel, M., Hylands, C., Lee, E.A., et al.: Ptolemy II: heterogeneous concurrent modeling and design in Java. University of California, Berkeley, Technical report, UCB/ERL M 99 (1999)Google Scholar
  9. 9.
    Elmqvist, H., Mattsson, S.E.: An introduction to the physical modeling language Modelica. In: 9th European Simulation Symposium (ESS), vol. 97, pp. 19–23 (1997)Google Scholar
  10. 10.
    Farhangi, H.: The path of the smart grid. IEEE Power Energ. Mag. 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fritzson, P.: Modelica - a cyber-physical modeling language and the OpenModelica environment. In: 2011 7th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1648–1653 (2011)Google Scholar
  12. 12.
    Geimer, M., Krüger, T., Linsel, P.: Co-simulation, gekoppelte simulation oder simulatorkopplung? O+P Ölhydraulik und Pneumatik 50(11–12), 572–576 (2006)Google Scholar
  13. 13.
    Georg, H., Müller, S.C., Dorsch, N., Rehtanz, C., Wietfeld, C.: INSPIRE: integrated co-simulation of power and ICT systems for real-time evaluation. In: 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 576–581 (2013)Google Scholar
  14. 14.
    Godfrey, T., Mullen, S., Griffith, D.W., Golmie, N., Dugan, R.C., Rodine, C.: Modeling smart grid applications with co-simulation. In: 2010 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 291–296 (2010)Google Scholar
  15. 15.
    Guillo-Sansano, E., Roscoe, A., Jones, C., Burt, G.: A new control method for the power interface in power hardware-in-the-loop simulation to compensate for the time delay. In: 2014 49th International Universities Power Engineering Conference (UPEC) (2014)Google Scholar
  16. 16.
    de Jong, E., de Graaff, R., Vaessen, P., Crolla, P., Roscoe, A., Lehfuß, F., Lauss, G., Kotsampopoulos, P., Gafaro, F.: European white book on real-time power hardware-in-the-loop testing. DERlab report (2011)Google Scholar
  17. 17.
    Kosek, A., Lnsdorf, O., Scherfke, S., Gehrke, O., Rohjans, S.: Evaluation of smart grid control strategies in co-simulation - integration of IPSYS and mosaik. In: 2014 Power Systems Computation Conference (PSCC) (2014)Google Scholar
  18. 18.
    Kotsampopoulos, P., Kleftakis, V., Messinis, G., Hatziargyriou, N.: Design, development and operation of a PHIL environment for Distributed Energy Resources. In: IECON 2012–38th Annual Conference of the IEEE Industrial Electronics Society, pp. 4765–4770 (2012)Google Scholar
  19. 19.
    Kotsampopoulos, P.C., Lehfuss, F., Lauss, G.F., Bletterie, B., Hatziargyriou, N.D.: The limitations of digital simulation and the advantages of PHIL testing in studying distributed generation provision of ancillary services. IEEE Trans. Ind. Electron. 62(9), 5502–5515 (2015)CrossRefGoogle Scholar
  20. 20.
    Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., Mili, L.: Power system and communication network co-simulation for smart grid applications. In: 2011 IEEE PES Innovative Smart Grid Technologies (ISGT) (2011)Google Scholar
  21. 21.
    Loddick, S., Mupambireyi, U., Blair, S., Booth, C., Li, X., Roscoe, A., Daffey, K., Rn, L.J.W.: The use of real time digital simulation and hardware in the loop to de-risk novel control algorithms. In: 2011 IEEE Electric Ship Technologies Symposium, pp. 213–218 (2011)Google Scholar
  22. 22.
    Lundstrom, B., Chakraborty, S., Lauss, S., Brndlinger, R., Conklin, R.: Evaluation of system-integrated smart grid devices using software- and hardware-in-the-loop. In: 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5 (2016)Google Scholar
  23. 23.
    Mets, K., Verschueren, T., Develder, C., Vandoorn, T.L., Vandevelde, L.: Integrated simulation of power and communication networks for smart grid applications. In: 2011 IEEE 16th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 61–65 (2011)Google Scholar
  24. 24.
    Neema, H., Sztipanovits, J., Burns, M., Griffor, E.: C2WT-TE: a model-based open platform for integrated simulations of transactive smart grids. In: Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (2016)Google Scholar
  25. 25.
    Nguyen, V.H., Tran, Q.T., Besanger, Y.: Scada as a service approach for interoperability of micro-grid platforms. Sustain. Energy Grids Netw. 8, 26–36 (2016)CrossRefGoogle Scholar
  26. 26.
    Noll, C., Blochwitz, T., Neidhold, T., Kehrer, C.: Implementation of modelisar functional mock-up interfaces in SimulationX. In: 8th International Modelica Conference, pp. 339–343 (2011)Google Scholar
  27. 27.
    Palensky, P., van der Meer, A., Lopez, C., Joseph, A., Pan, K.: Cosimulation of intelligent power systems: fundamentals, software architecture, numerics, and coupling. IEEE Ind. Electron. Mag. 11(1), 34–50 (2017)CrossRefGoogle Scholar
  28. 28.
    Palmintier, B., Lundstrom, B., Chakraborty, B., Williams, T., Schneider, K., Chassin, K.: A power hardware-in-the-loop platform with remote distribution circuit cosimulation. IEEE Trans. Ind. Electron. 62(4), 2236–2245 (2015)CrossRefGoogle Scholar
  29. 29.
    Podmore, R., Robinson, M.: The role of simulators for smart grid development. IEEE Trans. Smart Grid 1(2), 205–212 (2010)CrossRefGoogle Scholar
  30. 30.
    Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II. (2014)
  31. 31.
    Ren, L., Manish, M., Mayank, P., Rob, H., Anurag, S., Siddharth, S.: Geographically distributed real-time digital simulations using linear prediction. Int. J. Electr. Power Energy Syst. 84, 308–317 (2017)CrossRefGoogle Scholar
  32. 32.
    Ren, W., Sloderbeck, M., Steurer, M., Dinavahi, V., Noda, T., Filizadeh, S., Chevrefils, A., Matar, A., Iravani, R., Dufour, C., Belanger, J., Faruque, M.O., Strunz, K., Martinez, J.A.: Interfacing issues in real-time digital simulators. IEEE Trans. Power Deliv. 26(2), 1221–1230 (2011)CrossRefGoogle Scholar
  33. 33.
    Ren, W., Steurer, M., Baldwin, T.L.: Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms. IEEE Trans. Ind. Appl. 44(4), 1286–1294 (2008)CrossRefGoogle Scholar
  34. 34.
    Rohjans, S., Lehnhoff, S., Schütte, S., Scherfke, S., Hussain, S.: Mosaik - a modular platform for the evaluation of agent-based Smart Grid control. In: 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) (2013)Google Scholar
  35. 35.
    Roscoe, A.J., Mackay, A., Burt, G.M., McDonald, J.R.: Architecture of a network-in-the-loop environment for characterizing ac power-system behavior. IEEE Trans. Ind. Electron. 57(4), 1245–1253 (2010)CrossRefGoogle Scholar
  36. 36.
    Rotger-Griful, S., Chatzivasileiadis, S., Jacobsen, R.H., Stewart, E.M., Domingo, J.M., Wetter, M.: Hardware-in-the-loop co-simulation of distribution grid for demand response. In: 2016 Power Systems Computation Conference (PSCC), pp. 1–7 (2016)Google Scholar
  37. 37.
    Schloegl, F., Rohjans, S., Lehnhoff, S., Velasquez, J., Steinbrink, C., Palensky, P.: Towards a classification scheme for co-simulation approaches in energy systems. In: International Symposium on Smart Electric Distribution Systems and Technologies (EDST) 2015, pp. 516–521 (2015)Google Scholar
  38. 38.
    Schütte, S., Scherfke, S., Tröschel, M.: Mosaik: a framework for modular simulation of active components in smart grids. In: IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS), pp. 55–60 (2011)Google Scholar
  39. 39.
    Steinbrink, C.: A nonintrusive uncertainty quantification system for modular smart grid co-simulation. Ph.D. thesis, University of Oldenburg (2016)Google Scholar
  40. 40.
    Steurer, M., Bogdan, F., Ren, W., Sloderbeck, M., Woodruff, S.: Controller and power hardware-in-loop methods for accelerating renewable energy integration. In: Power Engineering Society General Meeting, pp. 1–4. IEEE (2007)Google Scholar
  41. 41.
    Strasser, T., Pröstl Andrén, F., Lauss, G., et al.: Towards holistic power distribution system validation and testing–an overview and discussion of different possibilities. e & i Elektrotech. Informationstechnik 134(1), 71–77 (2017)CrossRefGoogle Scholar
  42. 42.
    Viehweider, A., Lauss, G., Felix, L.: Stabilization of power hardware-in-the-loop simulations of electric energy systems. Simul. Model. Practi. Theory 19(7), 1699–1708 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.OFFIS e.V.OldenburgGermany
  2. 2.HAW Hamburg University of Applied SciencesHamburgGermany
  3. 3.AIT Austrian Institute of TechnologyViennaAustria
  4. 4.Delft University of TechnologyDelftThe Netherlands
  5. 5.Technical University of DenmarkLyngbyDenmark
  6. 6.University of StrathclydeGlasgowUK
  7. 7.Fraunhofer Institute of Wind Energy and Energy System TechnologyKasselGermany
  8. 8.G2ElabUniversity Grenoble AlpesGrenobleFrance
  9. 9.European Distributed Energy Resources Laboratories (DERlab) e.V.KasselGermany
  10. 10.Commissariat à l’énergie atomique et aux énergies alternativesChamberyFrance
  11. 11.National Technical University of AthensAthensGreece
  12. 12.Ormazabal Corporate TechnologyBilbaoSpain
  13. 13.Centre for Renewable Energy Sources and SavingAthensGreece
  14. 14.SINTEF Energy ResarchTrondheimNorway

Personalised recommendations