Developmental Issues

Part of the Autism and Child Psychopathology Series book series (ACPS)


Social nature is a characteristic that many species of living organisms might share. However, humans have a series of features which sets them apart from any other living species, such as thinking about others’ intentions and actions and the ability to think about their inner world. How this social trait is developed and how its development trajectory occurs have been a topic of interest for social sciences and social neuroscience since the past decades. Social cognition, behavior, and brain are concepts that come to light in order to disentangle this theme. This chapter addresses the timeline of social functioning development during childhood, focusing mainly on behaviors that could be understood as building blocks for more complex social behaviors acquired later in life. According to this aim, we will describe how abilities such as biological motion preference, perception of faces, mutual gaze, gaze following, joint attention, perspective taking, mentalization, and decision making are crucial for the development of social skills during childhood. Furthermore, we will review neurobiological mechanisms related to early social development through the analysis of biological markers present in electroencephalography and imaging studies. We will analyze how social development might deviate from the expected course in disorders such as autism and attentional deficit disorder as well as how conditions such as blindness, deafness, and specific language impairment could impact social development. We highlight how an integrative understanding of development contributes to a better comprehension of human social development functioning inasmuch as it considers it an ever-increasing complexity phenomenon.


Social skills Social cognition Development Childhood Autism spectrum disorder EEG fMRI Social brain Theory of mind 



We thank Miki Soto for proofreading the manuscript. This work was supported by Comisión Nacional de Investigación Científica y Tecnológica CONICYT (Grant PCHA/DoctoradoNacional/2014-21140043 to Patricia Soto-Icaza and Grant FONDECYT inicio 11140535 to Pablo Billeke).

The authors report no biomedical financial interest or potential conflicts of interest.


  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5®). Washington, DC: Author.CrossRefGoogle Scholar
  2. Arora, A., Weiss, B., Schurz, M., Aichhorn, M., Wieshofer, R., & Perner, J. (2015). Left inferior-parietal lobe activity in perspective tasks: Identity statements. Frontiers in Human Neuroscience, 9, 360. doi: 10.3389/fnhum.2015.00360 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Auer, D. (2008). Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magnetic Resonance Imaging, 26(7), 1055–1064. doi: 10.1016/j.mri.2008.05.008 PubMedCrossRefGoogle Scholar
  4. Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396.PubMedCrossRefGoogle Scholar
  5. Baillargeon, R., Scott, R., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14(3), 110–118. doi: 10.1016/j.tics.2009.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balas, B. J., Nelson, C., Westerlund, A., Vogel-Farley, V., Riggins, T., & Kuefner, D. (2010). Personal familiarity influences the processing of upright and inverted faces in infants. Frontiers in Human Neuroscience, 4, 1. doi: 10.3389/neuro.09.001.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baron-Cohen, S., Leslie, A., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46.PubMedCrossRefGoogle Scholar
  8. Baruth, J. M., Casanova, M. F., Sears, L., & Sokhadze, E. (2010). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187. doi: 10.2478/v10134-010-0024-9 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bedny, M., Pascual-Leone, A., & Saxe, R. (2009). Growing up blind does not change the neural bases of theory of mind. Proceedings of the National Academy of Sciences, 106(27), 11312–11317. doi: 10.1073/pnas.0900010106 CrossRefGoogle Scholar
  10. Bertenthal, B. I., Proffitt, D. R., & Cutting, J. E. (1984). Infant sensitivity to figural coherence in biomechanical motions. Journal of Experimental Child Psychology, 37(2), 213–230. doi:  10.1016/0022-0965(84)90001-8 PubMedCrossRefGoogle Scholar
  11. Betzel, R., Byrge, L., He, Y., Goñi, J., Zuo, X., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage, 102, 345–357. doi: 10.1016/j.neuroimage.2014.07.067 PubMedCrossRefGoogle Scholar
  12. Billeci, L., Sicca, F., Maharatna, K., Apicella, F., Narzisi, A., Campatelli, G., & Muratori, F. (2013). On the application of quantitative EEG for characterizing autistic brain: A systematic review. Frontiers in Human Neuroscience, 7, 442. doi: 10.3389/fnhum.2013.00442 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Billeke, P., & Aboitiz, F. (2013). Social cognition in schizophrenia: From social stimuli processing to social engagement. Frontiers in Psychiatry, 4, 1–12. doi: 10.3389/fpsyt.2013.00004 CrossRefGoogle Scholar
  14. Billeke, P., Armijo, A., Castillo, D., López, T., Zamorano, F., Cosmelli, D., & Aboitiz, F. (2015). Paradoxical expectation: Oscillatory brain activity reveals social interaction impairment in schizophrenia. Biological Psychiatry, 78, 421–431. doi: 10.1016/j.biopsych.2015.02.012 PubMedCrossRefGoogle Scholar
  15. Billeke, P., Zamorano, F., López, T., Rodriguez, C., Cosmelli, D., & Aboitiz, F. (2014). Someone has to give in: Theta oscillations correlate with adaptive behavior in social bargaining. Social Cognitive and Affective Neuroscience, 9, 2041–2048. doi: 10.1093/scan/nsu012 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brazelton, T. B., Tronick, E., Adamson, L., Als, H., & Wise, S. (1975). Early mother-infant reciprocity. In R. Porter & M. O'Connor (Eds.), Ciba Foundation Symposium 33-Parent-Infant Interaction (pp. 137–154). Chichester: John Wiley & Sons, Ltd..Google Scholar
  17. Camerer, C. F. (2013). Goals, methods, and progress in neuroeconomics. Annual Review of Economics, 5(1), 425–455. doi: 10.1146/annurev-economics-082012-123040 CrossRefGoogle Scholar
  18. Carter, R., & Huettel, S. (2013). A nexus model of the temporal–parietal junction. Trends in Cognitive Sciences, 17(7), 328–336. doi: 10.1016/j.tics.2013.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caruana, N., Brock, J., & Woolgar, A. (2015). A frontotemporoparietal network common to initiating and responding to joint attention bids. NeuroImage, 108, 34–46. doi: 10.1016/j.neuroimage.2014.12.041 PubMedCrossRefGoogle Scholar
  20. Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125(8), 1839–1849.PubMedCrossRefGoogle Scholar
  21. Charman, T. (2003). Why is joint attention a pivotal skill in autism? Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358, 315–324.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15, 481–498.Google Scholar
  23. Chawarska, K., Ye, S., Shic, F., & Chen, L. (2016). Multilevel differences in spontaneous social attention in toddlers with autism spectrum disorder. Child Development, 87(2), 543–557. doi: 10.1111/cdev.12473 PubMedCrossRefGoogle Scholar
  24. Corbetta, M., Pate, G., & Schulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. doi: 10.1016/j.neuron.2008.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Courchesne, E., Ganz, L., & Norcia, M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52, 804–811.PubMedCrossRefGoogle Scholar
  26. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230.PubMedCrossRefGoogle Scholar
  27. Csibra, G., Kushnerenko, E., & Grossmann, T. (2008). Electrophysiological methods in studying infant cognitive development. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 1–50). Cambridge: MIT Press.Google Scholar
  28. Dawson, G., Webb, S., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: Insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27(3), 403–424.PubMedCrossRefGoogle Scholar
  29. de Haan, M., Johnson, M. H., & Halit, H. (2007). Development of face-sensitive event-related potentials during infancy. In M. de Haan (Ed.), Infant EEG and event-related potentials. New York: Psychology Press.Google Scholar
  30. de Haan, M., & Nelson, C. (1999). Brain activity differentiates face and object processing in 6-month-old infants. Developmental Psychology, 35, 1113–1121.PubMedCrossRefGoogle Scholar
  31. de Haan, M., Pascalis, O., & Johnson, M. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14(2), 199–209.PubMedCrossRefGoogle Scholar
  32. Di Giorgio, E., Méary, D., Pascalis, O., & Simion, F. (2013). The face perception system becomes species-specific at 3 months: An eye-tracking study. International Journal of Behavioral Development, 37(2), 95–99.CrossRefGoogle Scholar
  33. Elsabbagh, M., Volein, A., Csibra, G., Holmboe, K., Garwood, H., Tucker, L., … Johnson, M. H. (2009). Neural correlates of eye gaze processing in the infant broader autism phenotype. Biological Psychiatry, 65, 31–38. doi: 10.1016/j.biopsych.2008.09.034 PubMedCrossRefGoogle Scholar
  34. Emery, N. J. (2000). The eyes have it: The neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews, 24(6), 581–604.CrossRefGoogle Scholar
  35. Fair, D., Cohen, A., Power, J., Dosenbach, N., Church, J., Miezin, F., … Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5. doi: 10.1371/journal.pcbi.1000381
  36. Farroni, T., Csibra, G., Simion, F., & Johnson, M. (2002). Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences, 99(14), 9602–9605.CrossRefGoogle Scholar
  37. Gauthier, I., Tarr, M., Anderson, A. W., Skudlarski, P., & Gore, J. (1999). Activation of the middle fusiform ‘face area’ increases with expertise recognizing novel objects. Nature Neuroscience, 2(6), 568–573.PubMedCrossRefGoogle Scholar
  38. Gonzalez-Gadea, M. L., Sigman, M., Rattazzi, A., Lavin, C., Rivera-Rei, A., Marino, J., & Ibanez, A. (2016). Neural markers of social and monetary rewards in children with attention-deficit/hyperactivity disorder and autism spectrum disorder. Scientific Reports, 6. doi: 10.1038/srep30588
  39. Hamilton, A., Brindley, R., & Frith, U. (2009). Visual perspective taking impairment in children with autistic spectrum disorder. Cognition, 113, 37–44. doi: 10.1016/j.cognition.2009.07.007 PubMedCrossRefGoogle Scholar
  40. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.PubMedCrossRefGoogle Scholar
  41. Happé, F., & Frith, U. (2014). Annual research review: Towards a developmental neuroscience of atypical social cognition. Journal of Child Psychology and Psychiatry, 55(6), 553–577.PubMedCrossRefGoogle Scholar
  42. Harlow, H. F., & Zimmerman, R. (1959). Affectional responses in the infant monkey; orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers. Science, 130(3373), 421–431.PubMedCrossRefGoogle Scholar
  43. Hileman, C., Henderson, H., Mundy, P., Newell, L., & Jaime, M. (2011). Developmental and individual differences on the P1 and N170 ERP components in children with and without autism. Developmental Neuropsychology, 36(2), 214–236. doi: 10.1080/87565641.2010.549870 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hobson, P., & Bishop, M. (2003). The pathogenesis of autism: Insights from congenital blindness. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1430), 335–344.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hopkins, W., & Taglialatela, J. (2013). Initiation of joint attention is associated with morphometric variation in the anterior cingulate cortex of chimpanzees (Pan troglodytes). American Journal of Primatology, 75, 441–449. doi: 10.1002/ajp.22120 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Itier, R. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14, 132–142.PubMedCrossRefGoogle Scholar
  47. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception, 14, 201–211.Google Scholar
  48. Johnson, M. (2006). Biological motion: A perceptual life detector? Current Biology, 16(10), R376–R377.PubMedCrossRefGoogle Scholar
  49. Johnson, M. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1(1), 7–21. doi: 10.1016/j.dcn.2010.07.003 PubMedCrossRefGoogle Scholar
  50. Johnson, M., & de Haan, M. (2015). Developmental cognitive neuroscience: An introduction (4th ed.). New York: John Wiley & Sons.Google Scholar
  51. Johnson, M., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., et al. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17(3), 599–619.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature, 504(7480), 427–431. doi: 10.1038/nature12715 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kana, R., Libero, L., Hu, C., Deshpande, H., & Colburn, J. (2014). Functional brain networks and white matter underlying theory-of-mind in autism. Social Cognitive and Affective Neuroscience, 9(1), 98–105. doi: 10.1093/scan/nss106 PubMedCrossRefGoogle Scholar
  54. Kelly, D., Quinn, P., Slater, A., Lee, K., Gibson, A., Smith, M., & Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8(6), F31–F36.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kennedy, D., & Adolphs, R. (2012). Feature review: The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559–572. doi: 10.1016/j.tics.2012.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59, 809–816.PubMedCrossRefGoogle Scholar
  57. Kopp, F., & Lindenberger, U. (2011). Effects of joint attention on long-term memory in 9-month-old infants: An event-related potentials study. Developmental Science, 14(4), 660–672. doi: 10.1111/j.1467-7687.2010.01010.x PubMedCrossRefGoogle Scholar
  58. Krall, S., Volz, L., Oberwelland, E., Grefkes, C., Fink, G., & Konrad, K. (2016). The right temporoparietal junction in attention and social interaction: A transcranial magnetic stimulation study. Human Brain Mapping, 37, 796–807. doi: 10.1002/hbm.23068 PubMedCrossRefGoogle Scholar
  59. Kuefner, D., de Heering, A., Jacques, C., Palmero-Soler, E., & Rossion, B. (2010). Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Frontiers in Human Neuroscience, 3, 67. doi: 10.3389/neuro.09.067.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lachat, F., Hugueville, L., Lemaréchal, J.-D., Conty, L., & George, N. (2012). Oscillatory brain correlates of live joint attention: A dual-EEG study. Frontiers in Human Neuroscience, 6(156), 1–12. doi: 10.3389/fnhum.2012.00156 Google Scholar
  61. Lee, D. (2005). Neuroeconomics: Making risky choices in the brain. Nature Neuroscience, 8(9), 1129–1130. doi: 10.1038/nn0905-1129 PubMedCrossRefGoogle Scholar
  62. Lombardo, M., Chakrabarti, B., Bullmore, E., MRC AIMS Consortium, & Baron-Cohen, S. (2011). Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. NeuroImage, 56(3), 1832–1838. doi: 10.1016/j.neuroimage.2011.02.067 PubMedCrossRefGoogle Scholar
  63. Luyster, R., Powell, C., Tager-Flusberg, H., & Nelson, C. (2014). Neural measures of social attention across the first years of life: Characterizing typical development and markers of autism risk. Developmental Cognitive Neuroscience, 8, 131–143. doi: 10.1016/j.dcn.2013.09.006 PubMedCrossRefGoogle Scholar
  64. Macchi Cassia, V., Bulf, H., Quadrelli, E., & Proietti, V. (2014). Age-related face processing bias in infancy: Evidence of perceptual narrowing for adult faces. Developmental Psychobiology, 56(2), 238–248. doi: 10.1002/dev.21191 PubMedCrossRefGoogle Scholar
  65. Meltzoff, A., & Moore, M. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 75–78.PubMedCrossRefGoogle Scholar
  66. Mills, K., Lalonde, F., Clasen, L., Giedd, J., & Blakemore, S. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9(1), 123–131. doi: 10.1093/scan/nss113 PubMedCrossRefGoogle Scholar
  67. Moll, H., & Kadipasaoglu, D. (2013). The primacy of social over visual perspective-taking. Frontiers in Human Neuroscience, 7, 558. doi: 10.3389/fnhum.2013.00558 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Moll, H., & Meltzoff, A. (2011). How does it look? Level 2 perspective-taking at 36 months of age. Child Development, 82, 661–673. doi: 10.1111/j.1467-8624.2010.01571.x PubMedCrossRefGoogle Scholar
  69. Morgan, B., Maybery, M., & Durkin, K. (2003). Weak central coherence, poor joint attention, and low verbal ability: Independent deficits in early autism. Developmental Psychology, 39(4), 646–656.PubMedCrossRefGoogle Scholar
  70. Mundy, P., Card, J., & Fox, N. (2000). EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36(4), 325–338.PubMedCrossRefGoogle Scholar
  71. Mundy, P., & Jarrold, W. (2010). Infant joint attention, neural networks and social cognition. Neural Networks, 23(8), 985–997. doi: 10.1016/j.neunet.2010.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mundy, P., Kim, K., McIntyre, N., Lerro, L., & Jarrold, W. (2016). Brief report: Joint attention and information processing in children with higher functioning autism spectrum disorders. Journal of Autism and Developmental Disorders, 46(7), 2555–2560. doi: 10.1007/s10803-016-2785-6 PubMedCrossRefGoogle Scholar
  73. Mundy, P., Sullivan, L., & Mastergeorge, A. (2009). A parallel and distributed-processing model of joint attention, social cognition and autism. Autism Research, 2(1), 2–21. doi: 10.1002/aur.61 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nelson, C., & McCleery, J. (2008). Use of event-related potentials in the study of typical and atypical development. Journal of the American Academy of Child and Adolescent Psychiatry, 47(11), 1252–1261. doi: 10.1097/CHI.0b013e318185a6d8 PubMedPubMedCentralCrossRefGoogle Scholar
  75. O’Nions, E., Sebastian, C., McCrory, E., Chantiluke, K., Happé, F., & Viding, E. (2014). Neural bases of theory of mind in children with autism spectrum disorders and children with conduct problems and callous unemotional traits. Developmental Science, 17(5), 786–796. doi: 10.1111/desc.12167 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oberwelland, E., Schilbach, L., Barisic, I., Krall, S., Vogeley, K., Fink, G., … Schulte-Rüther, M. (2016). Look into my eyes: Investigating joint attention using interactive eye-tracking and fMRI in a developmental sample. NeuroImage, 130(15), 248–260. doi: 10.1016/j.neuroimage.2016.02.026 PubMedCrossRefGoogle Scholar
  77. Pavlova, M., & Sokolov, A. (2000). Orientation specificity in biological motion perception. Perception & Psychophysics, 62(5), 889–899.CrossRefGoogle Scholar
  78. Pelphrey, K., Sasson, N., Reznick, J., Paul, G., Goldman, B., & Piven, J. (2002). Visual scanning of faces in autism. Journal of Autism and Developmental Disorders, 32(4), 249–261.PubMedCrossRefGoogle Scholar
  79. Perner, J., & Roessler, J. (2012). From infants’ to children’s appreciation of belief. Trends in Cognitive Sciences, 16(10), 519–525. doi: 10.1016/j.tics.2012.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Peterson, C. (2009). Development of social-cognitive and communication skills in children born deaf. Scandinavian Journal of Psychology, 50(5), 475–483. doi: 10.1111/j.1467-9450.2009.00750.x PubMedCrossRefGoogle Scholar
  81. Peterson, C., Slaughter, V., Moore, C., & Wellman, H. M. (2016). Peer social skills and theory of mind in children with autism, deafness, or typical development. Developmental Psychology, 52(1), 46–57. doi: 10.1037/a0039833 PubMedCrossRefGoogle Scholar
  82. Quinn, P., Yahr, J., Kuhn, A., Slater, A., & Pascalis, O. (2002). Representation of the gender of human faces by infants: A preference for female. Perception, 31, 1109–1121.PubMedCrossRefGoogle Scholar
  83. Rogers, B., Morgan, V., Newton, A., & Gore, J. (2007). Assessing functional connectivity in the human brain by fMRI. Magnetic Resonance Imaging, 25(10), 1347–1357.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Saxe, R., Whitfield-gabrieli, S., Scholz, J., & Pelphrey, K. (2009). Brain regions for perceiving and reasoning about other people in school-aged children. Child Development, 80(4), 1197–1209. doi: 10.1111/j.1467-8624.2009.01325.x PubMedCrossRefGoogle Scholar
  85. Schick, B., De Villiers, P., De Villiers, J., & Hoffmeister, R. (2007). Language and theory of mind: A study of deaf children. Child Development, 78(2), 376–396.PubMedCrossRefGoogle Scholar
  86. Schurz, M., Aichhorn, M., Martin, A., & Perner, J. (2013). Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies. Frontiers in Human Neuroscience, 7, 712. doi: 10.3389/fnhum.2013.00712 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schurz, M., Kronbichler, M., Weissengruber, S., Surtees, A., Samson, D., & Perner, J. (2015). Clarifying the role of theory of mind areas during visual perspective taking: Issues of spontaneity and domain-specificity. NeuroImage, 117, 386–396. doi: 10.1016/j.neuroimage.2015.04.031 PubMedCrossRefGoogle Scholar
  88. Schurz, M., & Tholen, M. (2016). What brain imaging did (not) tell us about the Inferior Frontal Gyrus in theory of mind-a commentary on Samson et al.,(2015). Cortex, 74, 329–333. doi: 10.1016/j.cortex.2015.08.011 PubMedCrossRefGoogle Scholar
  89. Shield, A., Pyers, J., Martin, A., & Tager-Flusberg, H. (2016). Relations between language and cognition in native-signing children with autism spectrum disorder. Autism Research: Official Journal of the International Society for Autism Research. doi: 10.1002/aur.1621
  90. Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105, 809–813. doi: 10.1073/pnas.0707021105 CrossRefGoogle Scholar
  91. Smit, D., Boersma, M., Schnack, H., Micheloyannis, S., Boomsma, D., Hulshoff Pol, H., … de Geus, E. (2012). The brain matures with stronger functional connectivity and decreased randomness of its network. PLoS One, 7(5), e36896. doi: 10.1371/journal.pone.0036896 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sodian, B., & Kristen-Antonow, S. (2015). Declarative joint attention as a foundation of theory of mind. Developmental Psychology, 51(9), 1190–1200. doi: 10.1037/dev0000039 PubMedCrossRefGoogle Scholar
  93. Soto-Icaza, P., Aboitiz, F., & Billeke, P. (2015). Development of social skills in children: Neural and behavioral evidence for the elaboration of cognitive models. Frontiers in Neuroscience, 9, 333. doi: 10.3389/fnins.2015.00333 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18(7), 587–592.PubMedCrossRefGoogle Scholar
  95. Spanoudis, G. (2016). Theory of mind and specific language impairment in school-age children. Journal of Communication Disorders, 61, 83–96. doi: 10.1016/j.jcomdis.2016.04.003 PubMedCrossRefGoogle Scholar
  96. Steinbeis, N., Bernhardt, B., & Singer, T. (2012). Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron, 73(5), 1040–1051. doi: 10.1016/j.neuron.2011.12.027 PubMedCrossRefGoogle Scholar
  97. Striano, T., Reid, V., & Hoehl, S. (2006). Neural mechanisms of joint attention in infancy. European Journal of Neuroscience, 23, 2819–2823.PubMedCrossRefGoogle Scholar
  98. Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs by 13-month-old infants. Psychological Science, 18, 580–586. doi: 10.1111/j.1467-9280.2007.01943.x PubMedCrossRefGoogle Scholar
  99. Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Science, 3, 151–162.CrossRefGoogle Scholar
  100. Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. Journal of Experimental Child Psychology, 90(3), 255–273.PubMedCrossRefGoogle Scholar
  101. Tymofiyeva, O., Hess, C., Xu, D., & Barkovich, J. (2014). Structural MRI connectome in development: Challenges of the changing brain. The British Journal of Radiology, 87(1039), 20140086. doi: 10.1259/bjr.20140086 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Webb, S., Long, J., & Nelson, C. (2005). Longitudinal development of ERPs. A longitudinal investigation of visual event-related potentials in the first year of life. Developmental Science, 8(6), 605–616.PubMedCrossRefGoogle Scholar
  103. Wellman, H. M., Fang, F., & Peterson, C. C. (2011). Sequential progressions in a theory-of-mind scale: Longitudinal perspectives. Child Development, 82(3), 780–792. doi: 10.1111/j.1467-8624.2011.01583.x PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103–128.PubMedCrossRefGoogle Scholar
  105. Zieber, N., Kangas, A., Hock, A., Hayden, A., Collins, R., Bada, H., & Bhatt, R. S. (2013). Perceptual specialization and configural face processing in infancy. Journal of Experimental Child Psychology, 116(3), 625–639. doi: 10.1016/j.jecp.2013.07.007 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratorio de Neurociencias CognitivasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.División de Neurociencias, Centro de Investigación en Complejidad Social (neuroCICS)Universidad del DesarrolloSantiagoChile

Personalised recommendations