Advertisement

Life Cycle Assessment in an IoT Environment

  • Xinbao Liu
  • Jun Pei
  • Lin Liu
  • Hao Cheng
  • Mi Zhou
  • Panos M. Pardalos
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 126)

Abstract

Life Cycle Assessment (LCA) is a tool that assesses the environmental impacts and resources used throughout a product’s life cycle, i.e., from raw material acquisition to the production and use phases and waste management [263]. Hellweg found that LCA is an important decision-support tool that, among other functions, allows companies to benchmark and optimize the environmental performance of products or for authorities to design policies for sustainable consumption and production [287].

References

  1. 253.
    Benoît, C., Norris, G.A., Valdivia, S., et al.: The guidelines for social life cycle assessment of products: just in time. Int. J. Life Cycle Assess. 15(2), 156–163 (2010)CrossRefGoogle Scholar
  2. 254.
    Laratte, B., Guillaume, B., Kim, J., et al.: Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential. Sci. Total Environ. 418, 588–595 (2014)CrossRefGoogle Scholar
  3. 255.
    Benoit-Norris, C., Cavan, D.A., Norris, G.: Identifying social impacts in product supply chains: overview and application of the social hotspot database. Sustainability. 4(9), 1946–1965 (2012)CrossRefGoogle Scholar
  4. 256.
    Chester, M.V.: Life-cycle Environmental Inventory of Passenger Transportation in the United States. University of California, Berkeley (2008)Google Scholar
  5. 257.
    Chin, K.S., Xu, D.L., Yang, J.B., Lam, J.P.-K.: Group-based ER–AHP system for product project screening. Expert Syst. Appl. 35(4), 1909–1929 (2008)CrossRefGoogle Scholar
  6. 258.
    Murphy, C.W., Kendall, A.: Life cycle inventory development for corn and stover production systems under different allocation methods. Biomass Bioenergy. 58, 67–75 (2013)CrossRefGoogle Scholar
  7. 259.
    Consoli, F., Allen, D., Bousted, I.: Guidelines for Life-Cycle Assessment: A Code of Practice. STEAC, Pensaco-la (1993)Google Scholar
  8. 260.
    Moya, C., Domínguez, R., Van, H., Langenhove, et al.: Exergetic analysis in cane sugar production in combination with life cycle assessment. J. Clean. Prod. 59, 43–50 (2013)CrossRefGoogle Scholar
  9. 261.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  10. 262.
    Ryan, E., Jacques, D., Colombi, J., Schubert, C.: A proposed methodology to characterize the accuracy of life cycle cost estimates for DoD programs. Proc Comput Sci. 8, 361–369 (2012)CrossRefGoogle Scholar
  11. 263.
    Finnveden, G., Hauschild, M.Z., Ekvall, T., et al.: Recent developments in life cycle assessment. J. Environ. Manag. 91, 1–21 (2009)CrossRefGoogle Scholar
  12. 264.
    Meylan, G., Ami, H., Spoerri, A.: Transitions of municipal solid waste management. Part II: hybrid life cycle assessment of Swiss glass-packaging disposal. Resour. Conserv. Recycl. 86, 16–27 (2014)CrossRefGoogle Scholar
  13. 265.
    Chhipi-Shrestha, G.K., Hewage, K., Sadiq, R.: ‘Socializing’ sustainability: a critical review on current development status of social life cycle impact assessment method. Clean Techn. Environ. Policy. 17, 579–596 (2015)CrossRefGoogle Scholar
  14. 266.
    Hauschild, M.Z., Goedkoop, M., Guinee, J., et al.: Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18(3), 683–697 (2013)CrossRefGoogle Scholar
  15. 267.
    Wang, H., Weng, D., Lu, X., Liang, L.: Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants. Nucl. Eng. Des. 262, 429–434 (2013)CrossRefGoogle Scholar
  16. 268.
    Dahlbo, H., Ollikainen, M., Peltola, S., Myllymaaa, T., Melanen, M.: Combining ecological and economic assessment of options for newspaper waste management. Resour. Conserv. Recycl. 51, 42–63 (2007)CrossRefGoogle Scholar
  17. 269.
    Hendrickson, C., Horvath, A., Joshi, S., Lave, L.: Economic input-output models for environmental life cycle assessment. Environ. Sci. Technol. 32(7), 184A–191A (1998., American Chemical Society)CrossRefGoogle Scholar
  18. 270.
  19. 273.
    International Organization for Standardization (ISO). Technical Committee TC 207/Subcommittee SC 5: Environmental management – Life cycle assessment – Principles and framework. International Standard 14040, June 1996Google Scholar
  20. 274.
    International Organization for Standardization (ISO): The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. ISO, Geneva (2006)Google Scholar
  21. 275.
    iPhone4S Environmental Report. September 12, 2012Google Scholar
  22. 276.
    Jolliet, O., Mtiller-Wenk, R., Bare, J., et al.: The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int. J. Life Cycle Assess. 9(6), 394–404 (2004)CrossRefGoogle Scholar
  23. 277.
    Woon, K.S., Lo, I.M.C.: An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resour. Conserv. Recycl. 107, 104–114 (2016)CrossRefGoogle Scholar
  24. 278.
    Kong G. L., Xu D. L., Yang J. B., Ma X. M.: Combined medical quality assessment using the evidential reasoning approach. Expert Syst. Appl. 42, 5522–5530 (2015).Google Scholar
  25. 279.
    Liu, X.B., Zhou, M., Yang, J.B., Yang, S.L.: Assessment of strategic R&D projects for car manufacturers based on the evidential reasoning approach. Int. J. Comput. Intell. Syst. 1, 24–49 (2008)Google Scholar
  26. 280.
    Curran, M.A., Notten, P.: Summary of global life cycle inventory data resources, report for SETAC/UNEP life cycle initiative, task force 1: database registry. www.epa.gov/NRMRL/lcaccess/pdfs/summary of global lci data resources.pdf (2006)
  27. 281.
    O’Brien, M., Doig, A., Clift, R.: Social and environmental life cycle assessment (SELCA). Int. J. Life Cycle Assess. 1, 231–237 (1996)CrossRefGoogle Scholar
  28. 282.
    Rowley, H.V., Lundie, S., Peters, G.M.: A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. Int. J. Life Cycle Assess. 14(6), 508–516 (2009)CrossRefGoogle Scholar
  29. 283.
    Kruse, S.A.: Ecotrust. Inclusion of Social Aspects in Life Cycle Assessment of Food. Environmental Assessment and Management in the Food Industry, pp. 219–233 (2010)Google Scholar
  30. 284.
    Gumus, S., Kucukvar, M., Tatar, O: Intuitionistic Fuzzy Multi-criteria Decision Making Framework Based on Life Cycle Environmental, Economic and Social Impacts: The Case of U.S. Wind Energy. Sustainable Production and Consumption, In Press. Available online 27 July 2016Google Scholar
  31. 285.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  32. 286.
    S’onmez, M., Holt, G.D., Yang, J.B., Graham, G.: Applying evidential reasoning to pre-qualifying construction contractors. J. Manag. Eng. 18(3), 111–119 (2002)CrossRefGoogle Scholar
  33. 287.
    Hellweg, S., Milà i Canals, L.: Emerging approaches, challenges and opportunities in life cycle assessment. Science. 344(6188), 1109–1113 (2014)CrossRefGoogle Scholar
  34. 288.
    Tang, D.W., Yang, J.B., Bamford, D., Xu, D.L., Waugh, M., Bamford, J., Zhang, S.L.: The evidential reasoning approach for risk management in large enterprises. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(1), 17–30 (2012)CrossRefGoogle Scholar
  35. 289.
    Wiedmann, T.O., Suh, S., Feng, K., et al.: Application of hybrid life cycle approaches to emerging energy technologies-the case of wind power in the UK. Environ. Sci. Technol. 45(13), 5900–5907 (2011)CrossRefGoogle Scholar
  36. 290.
    Fthenakis, V., Wang, W., Kim, H.C.: Life cycle inventory analysis of the production of metals used in photovoltaics. Renew. Sust. Energ. Rev. 13, 493–517 (2009)CrossRefGoogle Scholar
  37. 291.
    Moreau, V., Bage, G., Marcotte, D., Samson, R.: Statistical estimation of missing data in life cycle inventory: an application to hydroelectric power plants. J. Clean. Prod. 37, 335–341 (2012)CrossRefGoogle Scholar
  38. 293.
    Wang, Y.M., Yang, J.B., Xu, D.L.: Environmental impact assessment using the evidential reasoning approach. Eur. J. Oper. Res. 174, 1885–1913 (2006)CrossRefMATHGoogle Scholar
  39. 294.
    Xu, X.B., Zheng, J., Xu, D.L., Yang, J.B.: Information fusion method for fault diagnosis based on evidential reasoning rule. Control Theory Appl. 32(9), 1170–1182 (2015)Google Scholar
  40. 295.
    Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Trans. Syst. Man. Cybern. 24(1), 1–18 (1994)CrossRefGoogle Scholar
  41. 296.
    Yang, J.B., Xu, D.L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans. Syst. Man. Cybern. Part A: Syst. Hum. 32(3), 289–304 (2002)CrossRefGoogle Scholar
  42. 297.
    Yang, J.B., Wang, Y.M., Xu, D.L., Chin, K.S., Chatton, L.: Belief rule-based methodology for mapping consumer preferences and setting product targets. Expert Syst. Appl. 39, 4749–4759 (2012)CrossRefGoogle Scholar
  43. 298.
    Yang, Z., Onat, N.C., Kucukvar, M., Tatari, O.: Carbon and energy footprints of electric delivery trucks: a hybrid multi-regional input-output life cycle assessment. Transp. Res. Part D: Transp. Environ. 47, 195–207 (2016)CrossRefGoogle Scholar
  44. 299.
    Park, Y.S., Egilmez, G., Kucukvar, M.: A novel life cycle-based Principal Component Analysis framework for eco-efficiency analysis: case of the U.S. manufacturing and transportation nexus. J. Clean. Prod. 92, 327–342 (2015)CrossRefGoogle Scholar
  45. 300.
    Shih, Y.-H., Tseng, C.-H.: Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach. Appl. Energy. 119, 57–66 (2014)CrossRefGoogle Scholar
  46. 301.
    Walter Klöpffer, (1997) Life cycle assessment. Environmental Science and Pollution Research 4 (4):223-228Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xinbao Liu
    • 1
  • Jun Pei
    • 1
  • Lin Liu
    • 1
  • Hao Cheng
    • 1
  • Mi Zhou
    • 1
  • Panos M. Pardalos
    • 2
  1. 1.School of ManagementHefei University of TechnologyHefeiChina
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations