Dynamic Coordinated Supply Chain Scheduling in an IoT Environment

  • Xinbao Liu
  • Jun Pei
  • Lin Liu
  • Hao Cheng
  • Mi Zhou
  • Panos M. Pardalos
Part of the Springer Optimization and Its Applications book series (SOIA, volume 126)


The Internet of Things (IoT) refers to the networking of physical items through the use of embedded sensors and other devices that gather and convey information about the items. The data collected from these devices can be used to optimize products, services, and operations. One of the earliest and best-known applications of such technology appears in the area of energy optimization: sensors deployed across the electricity grid can help utilities remotely monitor energy usage and make responses to account for peak times and downtimes. The IoT is also widely used in manufacturing enterprises to optimize production. For example, in factories, sensors enhance production efficiency by providing a constant flow of data to optimize production processes. The data collected from equipment can be used to determine the operating state of the equipment. This can greatly improve the accuracy of the equipment maintenance plan, reduce maintenance costs, and reduce unplanned downtime. The data collected from vehicles can be used to predict the arrival time of raw materials and product components.


  1. 60.
    Bughin, J., Chui, M., Manyika, J.: An executive’s guide to the Internet of Things. (2015)
  2. 61.
    Qu, T., Lei, S.P., Wang, Z.Z., Nie, D.X., Chen, X., Huang, G.Q.: IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int. J. Adv. Manuf. Technol. 84, 147–164 (2015)CrossRefGoogle Scholar
  3. 62.
    Khaleel, H., Conzon, D., Kasinathan, P., Brizzi, P.: Heterogeneous applications, tools, and methodologies in the car manufacturing industry through an IoT approach. IEEE Syst. J. 1, 1–11 (2015)Google Scholar
  4. 63.
    Ghimire, S.,Luisferreira, F.,Nodehi, T.,Jardimgoncalves, R.: IoT based situational awareness framework for real-time project management. Int. J. Comput. Integr. Manuf. 30, (2015).  10.1080/0951192X.2015.1130242
  5. 64.
    Zhang, Y., Huang, G.Q., Sun, S., Yang, T.: Multi-agent based real-time production scheduling method for radio frequency identification enabled ubiquitous shopfloor environment. Comput. Ind. Eng. 76, 89–97 (2014)CrossRefGoogle Scholar
  6. 65.
    Zhong, R., Dai, Q., Qu, T., Hu, G., Huang, G.: RFID-enabled real-time manufacturing execution system for mass-customization production. Robot. Comput. Integr. Manuf. 29, 283–292 (2013)CrossRefGoogle Scholar
  7. 66.
    Hall, N.G., Potts, C.N.: Supply chain scheduling: batching and delivery. Oper. Res. 51, 566–584 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 67.
    Chen, Z., Vairaktarakis, G.L.: Integrated scheduling of production and distribution operations. Manag. Sci. 51, 614–628 (2005)CrossRefMATHGoogle Scholar
  9. 68.
    Chen, Z.: Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58, 130–148 (2010)CrossRefMATHGoogle Scholar
  10. 69.
    Chen, Z., Hall, N.G.: Supply chain scheduling: conflict and cooperation in assembly systems. Oper. Res. 55, 1072–1089 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 70.
    Hall, N.G., Potts, C.N.: The coordination of scheduling and batch deliveries. Ann. Oper. Res. 135, 41–64 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 71.
    Melouk, S., Damodaran, P., Chang, P.: Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing. Int. J. Prod. Econ. 87, 141–147 (2004)CrossRefGoogle Scholar
  13. 72.
    Cheng, B., Leung, Y.T., Li, K., Yang, S.: Single batch machine scheduling with deliveries. Nav. Res. Logist. 6, 470–482 (2015)MathSciNetCrossRefGoogle Scholar
  14. 73.
    Jula, P., Leachman, R.C.: Coordinated multistage scheduling of parallel batch-processing machines under multiresource constraints. Oper. Res. 58, 933–947 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 74.
    Lee, C.Y.: Minimizing makespan on a single batch processing machine with dynamic job arrivals. Int. J. Prod. Res. 37, 219–236 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 75.
    Zhang, G., Cai, X., Lee, C.Y., Wong, C.K.: Minimizing makespan on a single batch processing machine with nonidentical job sizes. Nav. Res. Logist. 48, 226–240 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 76.
    Kashan, A.H., Karimi, B., Jolai, F.: Minimizing makespan on a single batch processing machine with non-identical job sizes: a hybrid genetic approach. Nav. Res. Logist. 48, 226–240 (2001)CrossRefMATHGoogle Scholar
  18. 77.
    Kashan, A.H., Karimi, B.: An improved mixed integer linear formulation and lower bounds for minimizing makespan on a flow shop with batch processing machines. Int. J. Adv. Manuf. Technol. 40, 582–594 (2009)CrossRefGoogle Scholar
  19. 78.
    Li, C., Lee, C.Y.: Scheduling with agreeable release times and due dates on a batch processing machine. Eur. J. Oper. Res. 96, 564–569 (1997)CrossRefMATHGoogle Scholar
  20. 79.
    Sung, C.S., Choung, Y.I., Hong, J.M., Kim, Y.H.: Minimizing makespan on a single burn-in oven with job families and dynamic job arrivals. Comput. Oper. Res. 29, 995–1007 (2002)CrossRefMATHGoogle Scholar
  21. 80.
    Chang, P.C., Wang, H.M.: A heuristic for a batch processing machine scheduled to minimize total completion time with non-identical job sizes. Int. J. Adv. Manuf. Technol. 24, 615–620 (2004)CrossRefGoogle Scholar
  22. 81.
    Chou, F.D., Chang, P.C., Wang, H.M.: A hybrid genetic algorithm to minimize makespan for the single batch machine dynamic scheduling problem. Int. J. Adv. Manuf. Technol. 31, 350–359 (2006)CrossRefGoogle Scholar
  23. 82.
    Damodaran, P., Vélez-Gallego, M.C.: A simulated annealing algorithm to minimize makespan of parallel batch processing machines with unequal job ready times. Expert Syst. Appl. 39, 1451–1458 (2012)CrossRefGoogle Scholar
  24. 83.
    Kashan, A.H., Karimi, B., Jenabi, M.: A hybrid genetic heuristic for scheduling parallel batch processing machines with arbitrary job sizes. Comput. Oper. Res. 35, 1084–1098 (2008)CrossRefMATHGoogle Scholar
  25. 84.
    Zhou, S., Liu, M., Chen, H., Li, X.: An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes. Int. J. Prod. Econ. 179, 1–11 (2016)CrossRefGoogle Scholar
  26. 85.
    Jiang, L., Pei, J., Liu, X., Pardalos, P.M., Yang, Y., Qian, X.: Uniform parallel batch machines scheduling considering transportation using a hybrid DPSO-GA algorithm. Int. J. Adv. Manuf. Technol. 89, (2016).  10.1007/s00170-016-9156-5
  27. 86.
    Cheng, T.C.E., Kovalyov, M.Y.: Single machine batch scheduling with sequential job processing. Eur. J. Oper. Res. 135, 177–183 (2001)CrossRefMATHGoogle Scholar
  28. 87.
    Su, C.S., Pan, C.H., Hsu, T.S.: A new heuristic algorithm for the machine scheduling problem with job delivery coordination. Theor. Comput. Sci. 410, 2581–2591 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 88.
    Chou, F.D.: A joint GA+DP approach for single burn-in oven scheduling problems with makespan criterion. Int. J. Adv. Manuf. Technol. 35, 587–595 (2007)CrossRefGoogle Scholar
  30. 89.
    Sung, C.S., Choung, Y.I., Hong, J.M., Kim, Y.H.: Minimizing makespan on a single burn-in oven with job families and dynamic job arrivals. Comput. Oper. Res. 29, 995–1007 (2002)CrossRefMATHGoogle Scholar
  31. 90.
    Chang, P.Y., Damodaran, P., Melouk, S.: Minimizing makespan on parallel batch processing machines. Int. J. Prod. Res. 42, 4211–4220 (2004)CrossRefGoogle Scholar
  32. 91.
    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Wang, L., Yang, S.: Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm. Int. J. Syst. Sci. 47, 765–776 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 92.
    Pei, J., Liu, X., Pardalos, P.M., Migdalas, A., Yang, S.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Glob. Optim. (2015). doi: 10.1007/s10898-015-0320-5
  34. 93.
    Pei, J., Liu, X., Fan, W., Pardalos, P.M., Migdalas, A., Yang, S.: Scheduling jobs on a single serial-batching machine with dynamic job arrivals and multiple job types. Ann. Math. Artif. Intell. 76, 215–228 (2016)MathSciNetCrossRefMATHGoogle Scholar
  35. 95.
    Xu, R., Chen, H., Li, X.: Makespan minimization on single batch-processing machine via ant colony optimization. Comput. Oper. Res. 39, 582–593 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 96.
    Eusuff, M.M., Lansey, K.E., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38, 129–154 (2006)MathSciNetCrossRefGoogle Scholar
  37. 97.
    Glover, F.: A template for scatter search and path relinking. In: Lecture Notes in Computer Science, pp. 1–51 (1997)Google Scholar
  38. 98.
    Glover, F., Laguna, M., Mart’I, R.: Fundamentals of scatter search and path relinking. Control. Cybern. 29, 653–684 (2000)MathSciNetMATHGoogle Scholar
  39. 99.
    Lai, X., Hao, J., Lu, Z., Glover, F.: A learning-based path relinking algorithm for the bandwidth coloring problem. Eng. Appl. Artif. Intell. 52, 81–91 (2016)CrossRefGoogle Scholar
  40. 100.
    Zhang, X., Li, X., Wang, J.: Local search algorithm with path relinking for single batch-processing machine scheduling problem. Neural Comput. Appl. (2016). doi: 10.1007/s00521-016-2339-z
  41. 101.
    Yang, Z., Zhang, G., Zhu, H.: Multi-neighborhood based path relinking for two-sided assembly line balancing problem. J. Comb. Optim. 32, 396–415 (2016)MathSciNetCrossRefMATHGoogle Scholar
  42. 102.
    Scaparra, M.P., Church, R.L.: A GRASP and path relinking heuristic for rural road network development. J. Heuristics. 11, 89–108 (2005)CrossRefMATHGoogle Scholar
  43. 103.
    Lei, D., Guo, X.: A shuffled frog-leaping algorithm for job shop scheduling with outsourcing options. Int. J. Prod. Res. 54, 1–12 (2016)CrossRefGoogle Scholar
  44. 1.
    Bi, Z., Xu, L.D., Wang, C.: Internet of things for enterprise systems of modern manufacturing. IEEE Trans. Ind. Inform. 10, 1537–1546 (2014)CrossRefGoogle Scholar
  45. 8.
    Huang, C.D., Behara, R.S.: Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints. Int. J. Prod. Econ. 141, 255–268 (2013)CrossRefGoogle Scholar
  46. 10.
    Kong, H.K., Kim, T.S., Kim, J.: An analysis on effects of information security investments: a BSC perspective. J. Intell. Manuf. 23, 941–953 (2012)CrossRefGoogle Scholar
  47. 20.
    Lee, Y.J., Kauffman, R.J., Sougstad, R.: Profit-maximizing firm investments in customer information security. Decis. Support. Syst. 51, 904–920 (2011)CrossRefGoogle Scholar
  48. 30.
    Qrunfleh, S., Tarafdar, M.: Supply chain information systems strategy: impacts on supply chain performance and firm performance. Int. J. Prod. Econ. 147, 340–350 (2014)CrossRefGoogle Scholar
  49. 2.
    Houyou, A.M., Huth, H.P., Kloukinas, C., Trsek, H., Rotondi, D.: Agile manufacturing: general challenges and an IoT@Work perspective. In: Proceedings of 2012 I.E. 17th International Conference on Emerging Technologies & Factory Automation, pp. 1–7 (2012)Google Scholar
  50. 5.
    Anderson, R., Moore, T.: The economics of information security. Science. 314, 610–613 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xinbao Liu
    • 1
  • Jun Pei
    • 1
  • Lin Liu
    • 1
  • Hao Cheng
    • 1
  • Mi Zhou
    • 1
  • Panos M. Pardalos
    • 2
  1. 1.School of ManagementHefei University of TechnologyHefeiChina
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations