Circadian Sleep-Wake Activity Patterns During Aging

  • Katie L. StoneEmail author
  • Gregory J. Tranah
Part of the Healthy Ageing and Longevity book series (HAL, volume 7)


Aging is associated with altered circadian activity rhythms, the intrinsic physiologic cycles of approximately 24 h that are critically involved in control of sleep-wake cycles and numerous physiological processes. Measurement of 24-h patterns of activity is relatively simple and cost-effective using actigraphy. There is growing evidence that older adults with disrupted 24-h activity patterns (weak, more fragmented, and shifted circadian activity rhythms) have higher risk for a variety of age-related outcomes including earlier mortality, risk of cognitive impairment or risk of developing mild cognitive impairment and dementia, cardiovascular disease, depression and anxiety, and mortality risk. Further study is needed to establish mechanisms for these associations. In addition, future studies will be needed to test whether interventions (e.g. physical activity, bright light exposure, cataract surgery) that regulate circadian activity rhythms will improve health outcomes in the elderly.


Circadian activity rhythms Aging Epidemiology Actigraphy 



Supported by NIA: AG026720, AG05407, AR35582, AG05394, AR35584, AR35583, AR46238, AG027576-22, AG005394-22A1, AG027574-22A1, AG030474, and NHLBI: HL071194, HL070848, HL070847, HL070842, HL070841, HL070837, HL070838, HL070839.


  1. Ancoli-Israel S, Klauber MR, Jones DW et al (1997) Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep 20(1):18–23CrossRefPubMedGoogle Scholar
  2. Ancoli-Israel S, Martin JL, Kripke DF, Marler M, Klauber MR (2002) Effect of light treatment on sleep and circadian rhythms in demented nursing home patients. J Am Geriatr Soc 50(2):282–289CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ancoli-Israel S, Gehrman P, Martin JL et al (2003a) Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med 1(1):22–36CrossRefPubMedGoogle Scholar
  4. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003b) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3):342–392CrossRefPubMedGoogle Scholar
  5. Asai M, Yoshinobu Y, Kaneko S et al (2001) Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66(6):1133–1139CrossRefPubMedGoogle Scholar
  6. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450CrossRefPubMedGoogle Scholar
  7. Beaulieu-Bonneau S, Hudon C (2009) Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr 21(4):654–666CrossRefPubMedGoogle Scholar
  8. Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A (2009) Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev 62(1):57–70CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bliwise DL (1993) Sleep in normal aging and dementia. Sleep 16(1):40–81CrossRefPubMedGoogle Scholar
  10. Bombois S, Derambure P, Pasquier F, Monaca C (2010) Sleep disorders in aging and dementia. J Nutr Health Aging 14(3):212–217Google Scholar
  11. Buysse DJ, Monk TH, Carrier J, Begley A (2005) Circadian patterns of sleep, sleepiness, and performance in older and younger adults. Sleep 28(11):1365–1376CrossRefPubMedGoogle Scholar
  12. Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC (1988) Exposure to light in healthy elderly subjects and Alzheimer’s patients. Physiol Behav 42(2):141–144CrossRefPubMedGoogle Scholar
  13. Campbell SS, Terman M, Lewy AJ, Dijk DJ, Eastman CI, Boulos Z (1995) Light treatment for sleep disorders: consensus report. V. Age-related disturbances. J Biol Rhythms 10(2):151–154CrossRefPubMedGoogle Scholar
  14. Carrier J, Monk TH, Buysse DJ, Kupfer DJ (1996) Amplitude reduction of the circadian temperature and sleep rhythms in the elderly. Chronobiol Int 13(5):373–386CrossRefPubMedGoogle Scholar
  15. Chaudhury D, Colwell CS (2002) Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res 133(1):95–108CrossRefPubMedGoogle Scholar
  16. Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 20(3):225–236CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen R, Seo DO, Bell E, von Gall C, Lee C (2008) Strong resetting of the mammalian clock by constant light followed by constant darkness. J Neurosci 28(46):11839–11847CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chokroverty S (1999) Sleep disorders medicine: basic science, technical considerations, and clinical aspects, 2nd edn. Butterworth-Heinemann, Woburn, MAGoogle Scholar
  19. Czeisler CA, Dumont M, Duffy JF et al (1992) Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340(8825):933–936CrossRefPubMedGoogle Scholar
  20. David R, Zeitzer J, Friedman L, et al (2010) Non-pharmacologic management of sleep disturbance in Alzheimer’s disease. J Nutr Health Aging 14(3):203–206Google Scholar
  21. Duffy JF, Zeitzer JM, Rimmer DW, Klerman EB, Dijk DJ, Czeisler CA (2002) Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab 282(2):E297–E303CrossRefPubMedGoogle Scholar
  22. Gehrman P, Marler M, Martin JL, Shochat T, Corey-Bloom J, Ancoli-Israel S (2004) The timing of activity rhythms in patients with dementia is related to survival. J Gerontol Ser A Biol Sci Med Sci 59(10):1050–1055CrossRefGoogle Scholar
  23. Gehrman P, Marler M, Martin JL, Shochat T, Corey-Bloom J, Ancoli-Israel S (2005) The relationship between dementia severity and rest/activity circadian rhythms. Neuropsychiatr Dis Treat 1(2):155–163CrossRefPubMedPubMedCentralGoogle Scholar
  24. Germain A, Kupfer DJ (2008) Circadian rhythm disturbances in depression. Hum Psychopharmacol 23(7):571–585CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gonzalez MM, Aston-Jones G (2008) Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci USA 105(12):4898–4903CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grace JB, Walker MP, McKeith IG (2000) A comparison of sleep profiles in patients with dementia with lewy bodies and Alzheimer’s disease. Int J Geriatr Psychiatry 15(11):1028–1033CrossRefPubMedGoogle Scholar
  27. Hampp G, Albrecht U (2008) The circadian clock and mood-related behavior. Commun Integr Biol 1(1):1–3CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hampp G, Ripperger JA, Houben T et al (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18(9):678–683CrossRefPubMedGoogle Scholar
  29. Harmar AJ, Marston HM, Shen S et al (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109(4):497–508CrossRefPubMedGoogle Scholar
  30. Heinonen MV, Purhonen AK, Makela KA, Herzig KH (2008) Functions of orexins in peripheral tissues. Acta Physiol (Oxf) 192(4):471–485CrossRefGoogle Scholar
  31. Hofman MA, Swaab DF (1994) Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res 651(1–2):134–142CrossRefPubMedGoogle Scholar
  32. Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5(1):33–51CrossRefPubMedGoogle Scholar
  33. Kang JE, Lim MM, Bateman RJ et al (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326(5955):1005–1007CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kasper S, Hamon M (2009) Beyond the monoaminergic hypothesis: agomelatine, a new antidepressant with an innovative mechanism of action. World J Biol Psychiatry 10(2):117–126CrossRefPubMedGoogle Scholar
  35. Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 18(2):159–169CrossRefPubMedGoogle Scholar
  36. Kripke DF, Youngstedt SD, Elliott JA et al (2005) Circadian phase in adults of contrasting ages. Chronobiol Int 22(4):695–709CrossRefPubMedGoogle Scholar
  37. Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB (2007) The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci 9(3):333–342PubMedGoogle Scholar
  38. Lenze EJ, Sheffrin M, Driscoll HC et al (2008) Incomplete response in late-life depression: getting to remission. Dialogues Clin Neurosci 10(4):419–430PubMedPubMedCentralGoogle Scholar
  39. Lieverse R, Van Someren EJ, Nielen MM, Uitdehaag BM, Smit JH, Hoogendijk WJ (2011) Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry 68(1):61–70Google Scholar
  40. Linkowski P, Mendlewicz J, Leclercq R et al (1985) The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. J Clin Endocrinol Metab 61(3):429–438CrossRefPubMedGoogle Scholar
  41. Loewenstein RJ, Weingartner H, Gillin JC, Kaye W, Ebert M, Mendelson WB (1982) Disturbances of sleep and cognitive functioning in patients with dementia. Neurobiol Aging Winter 3(4):371–377CrossRefGoogle Scholar
  42. Loving RT, Kripke DF, Elliott JA, Knickerbocker NC, Grandner MA (2005) Bright light treatment of depression for older adults [ISRCTN55452501]. BMC Psychiatry 5:41CrossRefPubMedPubMedCentralGoogle Scholar
  43. Luik AI, Zuurbier LA, Hofman A, Van Someren EJ, Tiemeier H (2013) Stability and fragmentation of the activity rhythm across the sleep-wake cycle: the importance of age, lifestyle, and mental health. Chronobiol Int 30(10):1223–1230CrossRefPubMedGoogle Scholar
  44. Luik AI, Zuurbier LA, Hofman A, Van Someren EJ, Ikram MA, Tiemeier H (2015a) Associations of the 24-h activity rhythm and sleep with cognition: a population-based study of middle-aged and elderly persons. Sleep Med 16(7):850–855CrossRefPubMedGoogle Scholar
  45. Luik AI, Zuurbier LA, Direk N, Hofman A, Van Someren EJ, Tiemeier H (2015b) 24-Hour activity rhythm and sleep disturbances in depression and anxiety: a population-based study of middle-aged and older persons. Depress Anxiety 32(9):684–692CrossRefPubMedGoogle Scholar
  46. Maglione JE, Ancoli-Israel S, Peters KW et al (2014) Depressive symptoms and circadian activity rhythm disturbances in community-dwelling older women. Am J Geriatr Psychiatr Off J Am Assoc Geriatr Psychiatr 22(4):349–361CrossRefGoogle Scholar
  47. Maglione JE, Nievergelt CM, Parimi N et al (2015) Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 23(10):1075–1087CrossRefGoogle Scholar
  48. Marler MR, Gehrman P, Martin JL, Ancoli-Israel S (2005) The sigmoidally transformed cosine curve: a mathematical model for circadian rhythms with symmetric non-sinusoidal shapes. Stat Med. 28 Dec 2005Google Scholar
  49. Marler MR, Gehrman P, Martin JL, Ancoli-Israel S (2006) The sigmoidally transformed cosine curve: a mathematical model for circadian rhythms with symmetric non-sinusoidal shapes. Stat Med 25(22):3893–3904CrossRefPubMedGoogle Scholar
  50. Martin J, Marler M, Shochat T, Ancoli-Israel S (2000) Circadian rhythms of agitation in institutionalized patients with Alzheimer’s disease. Chronobiol Int 17(3):405–418CrossRefPubMedGoogle Scholar
  51. McClung CA (2011) Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 21(Suppl 4):S683–693Google Scholar
  52. Middleton B, Arendt J, Stone BM (1997) Complex effects of melatonin on human circadian rhythms in constant dim light. J Biol Rhythms 12(5):467–477CrossRefPubMedGoogle Scholar
  53. Moe KE, Vitiello MV, Larsen LH, Prinz PN (1995) Symposium: cognitive processes and sleep disturbances: sleep/wake patterns in Alzheimer’s disease: relationships with cognition and function. J Sleep Res 4(1):15–20CrossRefPubMedGoogle Scholar
  54. Monteleone P, Martiadis V, Maj M (2011) Circadian rhythms and treatment implications in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1569–1574Google Scholar
  55. Mormont MC, Waterhouse J (2002) Contribution of the rest-activity circadian rhythm to quality of life in cancer patients. Chronobiol Int 19(1):313–323CrossRefPubMedGoogle Scholar
  56. Mormont MC, Waterhouse J, Bleuzen P et al (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6(8):3038–3045PubMedGoogle Scholar
  57. Munch M, Cajochen C, Wirz-Justice A (2005) Sleep and circadian rhythms in ageing. Z Gerontol Geriatr 38(Suppl 1):I21–I23CrossRefPubMedGoogle Scholar
  58. Neikrug AB, Ancoli-Israel S (2010) Sleep disturbances in nursing homes. J Nutr Health Aging 14(3):207–211Google Scholar
  59. Pallier PN, Maywood ES, Zheng Z et al (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27(29):7869–7878CrossRefPubMedGoogle Scholar
  60. Paudel ML, Taylor BC, Ancoli-Israel S et al (2010) Rest/activity rhythms and mortality rates in older men: MrOS sleep study. Chronobiol Int 27(2):363–377CrossRefPubMedPubMedCentralGoogle Scholar
  61. Paudel ML, Taylor BC, Ancoli-Israel S et al (2011) Rest/activity rhythms and cardiovascular disease in older men. Chronobiol Int 28(3):258–266CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pollak CP, Perlick D (1991) Sleep problems and institutionalization of the elderly. J Geriatr Psychiatry Neurol 4(4):204–210PubMedGoogle Scholar
  63. Rogers TS, Blackwell TL, Lane NE, et al (2016) Rest-activity patterns and falls and fractures in older men. Osteoporos Int J (Established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 24 Dec 2016)Google Scholar
  64. Ruby NF, Hwang CE, Wessells C et al (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA 105(40):15593–15598CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8(3):171–181CrossRefPubMedGoogle Scholar
  66. Sakurai N, Sasaki M (1998) An activity monitor study on the sleep-wake rhythm of healthy aged people residing in their homes. Psychiatry Clin Neurosci 52(2):253–255CrossRefPubMedGoogle Scholar
  67. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731CrossRefPubMedGoogle Scholar
  68. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263CrossRefPubMedGoogle Scholar
  69. Satlin A, Volicer L, Stopa EG, Harper D (1995) Circadian locomotor activity and core-body temperature rhythms in Alzheimer’s disease. Neurobiol Aging 16(5):765–771CrossRefPubMedGoogle Scholar
  70. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458CrossRefPubMedPubMedCentralGoogle Scholar
  71. Smagula SF, Ancoli-Israel S, Blackwell T et al (2015a) Circadian rest-activity rhythms predict future increases in depressive symptoms among community-dwelling older men. Am J Geriatr Psychiatry 23(5):495–505CrossRefPubMedGoogle Scholar
  72. Smagula SF, Boudreau RM, Stone K et al (2015b) Latent activity rhythm disturbance sub-groups and longitudinal change in depression symptoms among older men. Chronobiol Int 32(10):1427–1437CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sumaya IC, Rienzi BM, Deegan JF 2nd, Moss DE (2001) Bright light treatment decreases depression in institutionalized older adults: a placebo-controlled crossover study. J Gerontol A Biol Sci Med Sci 56(6):M356–M360CrossRefPubMedGoogle Scholar
  74. Tranah GJ, Blackwell T, Ancoli-Israel S et al (2010) Circadian activity rhythms and mortality: the study of osteoporotic fractures. J Am Geriatr Soc 58(2):282–291CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tranah GJ, Blackwell T, Stone KL et al (2011) Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol 70(5):722–732CrossRefPubMedPubMedCentralGoogle Scholar
  76. Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 92(11):1439–1444CrossRefPubMedPubMedCentralGoogle Scholar
  77. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283(5401):549–554CrossRefPubMedGoogle Scholar
  78. van Hilten JJ, Middelkoop HA, Braat EA et al (1993) Nocturnal activity and immobility across aging (50–98 years) in healthy persons. J Am Geriatr Soc 41(8):837–841CrossRefPubMedGoogle Scholar
  79. Van Someren EJ (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35(9–10):1229–1237CrossRefPubMedGoogle Scholar
  80. van Someren EJ, Hagebeuk EE, Lijzenga C et al (1996) Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiat 40(4):259–270CrossRefPubMedGoogle Scholar
  81. Van Someren EJ, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB (1999) Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol Int 16(4):505–518CrossRefPubMedGoogle Scholar
  82. Vitiello MV, Prinz PN (1989) Alzheimer’s disease. Sleep and sleep/wake patterns. Clin Geriatr Med 5(2):289–299PubMedGoogle Scholar
  83. Walsh CM, Blackwell T, Tranah GJ et al (2014) Weaker circadian activity rhythms are associated with poorer executive function in older women. Sleep 37(12):2009–2016CrossRefPubMedPubMedCentralGoogle Scholar
  84. Weitzman ED, Moline ML, Czeisler CA, Zimmerman JC (1982) Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging Winter 3(4):299–309CrossRefGoogle Scholar
  85. Wu JC, Kelsoe JR, Schachat C et al (2009) Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiat 66(3):298–301CrossRefPubMedGoogle Scholar
  86. Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31CrossRefPubMedGoogle Scholar
  87. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 99(16):10801–10806CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yan SS, Wang W (2016) The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol 9(7):1066–1074PubMedPubMedCentralGoogle Scholar
  89. Yoon IY, Kripke DF, Elliott JA, Youngstedt SD, Rex KM, Hauger RL (2003) Age-related changes of circadian rhythms and sleep-wake cycles. J Am Geriatr Soc 51(8):1085–1091CrossRefPubMedGoogle Scholar
  90. Zuurbier LA, Luik AI, Hofman A, Franco OH, Van Someren EJ, Tiemeier H (2015) Fragmentation and stability of circadian activity rhythms predict mortality: the Rotterdam study. Am J Epidemiol 181(1):54–63CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.California Pacific Medical Center Research InstituteSan FranciscoUSA

Personalised recommendations