Skip to main content

Numerical Investigation of a Model Wind Turbine

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XI

Abstract

In the present study, a model turbine with 1.5 m rotor radius is investigated numerically by means of CFD (Computational Fluid Dynamics). A \(120^{\circ }\)-model of the turbine under free stream condition is created and a grid convergence study is performed. As the real model turbine will operate in a wind tunnel with high blockage ratio, the influence caused by limited space is analysed. Therefore, sectional loads along the blade radius, global loads as well as the axial induction and the effective angle of attack are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benek, J.A., Steger, J.L., Dougherty, F.C., Buning, P.G.: In: Chimera. A Grid-Embedding Technique (1986)

    Google Scholar 

  2. Celik, I.B., Ghia, U., Roache, P.J. et al.: Procedure for estimation and reporting of uncertainty due to discretization in \(\{\)CFD\(\}\) applications. J. Fluids \(\{\)Eng.-Trans.\(\}\) of the \(\{\)ASME\(\}\)  130(7) (2008)

    Google Scholar 

  3. Fischer, A., Lutz, T., Kramer, E., Cordes, U., Hufnagel, K., Tropea, C., Kampers, G., Hölling, M., Peinke, J.: Numerical and experimental investigation of an airfoil with load control in the wake of an active grid. In: Journal of Physics: Conference Series, vol. 753, p. 022036. IOP Publishing (2016)

    Google Scholar 

  4. Gasch, R., Twele, J.: Windkraftanlagen: Grundlagen, Entwurf. Springer, Planung und Betrieb (2010)

    Google Scholar 

  5. Huang, X., Vey, S., Meinke, M., Schroeder, W., Pechlivanoglou, G., Nayeri, C., Paschereit, C.O.: Numerical and experimental investigation of wind turbine wakes. In: 45th AIAA Fluid Dynamics Conference, p. 2310 (2015)

    Google Scholar 

  6. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA 1596, 1991 (1991)

    Google Scholar 

  7. Jameson, A., Schmidt, W., Turkel, E., et al.: Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes. AIAA 1259, 1981 (1981)

    Google Scholar 

  8. Johansen, J., Sørensen, N.N.: Aerofoil characteristics from 3D CFD rotor computations. Wind Energy 7(4), 283–294 (2004)

    Article  Google Scholar 

  9. Kim, Y., Jost, E., Bangga, G., Weihing, P., Lutz, T.: Effects of ambient turbulence on the near wake of a wind turbine. J. Phys. Conf. Ser. 753(3), 032047 (2016)

    Google Scholar 

  10. Klein, L., Schulz, C., Lutz, T., Krämer, E. et al.: Inflnence of jet flow on the aerodynamics of a floating model wind turbine. In: The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2016)

    Google Scholar 

  11. Krogstad, P.Å., Lund, J.: An experimental and numerical study of the performance of a model turbine. Wind Energy 15(3), 443–457 (2012)

    Article  Google Scholar 

  12. Kroll, N., Rossow, C.C., Becker, K., Thiele, F.: The megaflow project. Aerosp. Sci. Technol. 4(4), 223–237 (2000)

    Article  MATH  Google Scholar 

  13. Meister, K.: Numerische Untersuchung zum aerodynamischen und aeroelastischen Verhalten einer Windenergieanlage bei turbulenter atmosphärischer Zuströmung. Shaker Verlag (2015)

    Google Scholar 

  14. Pechlivanoglou, G., Fischer, J., Eisele, O., Vey, S., Nayeri, C.N., Paschereit, C.O.: Development of a medium scale research hawt for inflow and aerodynamic research in the tu berlin wind tunnel. DEWEK (2015)

    Google Scholar 

  15. Sayed, M., Lutz, T., Krämer, E.: Aerodynamic investigation of flow over a multi-megawatt slender bladed horizontal-axis wind turbine (2015)

    Google Scholar 

  16. Schepers, J., Snel, H.: Model experiments in controlled conditions. ECN report (2007)

    Google Scholar 

  17. Schulz, C., Fischer, A., Weihing, P., Lutz, T., Krämer, E.: Evaluation and control of loads on wind turbines under different operating conditions by means of cfd. In: High Performance Computing in Science and Engineering’ 15, pp. 463–478. Springer (2016)

    Google Scholar 

  18. Schulz, C., Klein, L., Weihing, P., Lutz, T.: Investigations into the interaction of a wind turbine with atmospheric turbulence in complex terrain. J. Phys. Conf. Ser. 753(3), 032016 (2016)

    Google Scholar 

  19. Schulz, C., Letzgus, P., Lutz, T., Krämer, E.: CFD study on the impact of yawed inflow on loads, power and near wake of a generic wind turbine. Wind Energy (2016)

    Google Scholar 

  20. Schümann, H., Pierella, F., Sætran, L.: Experimental investigation of wind turbine wakes in the wind tunnel. Energy Procedia 35, 285–296 (2013)

    Article  Google Scholar 

  21. Sorensen, N., Michelsen, J., Schreck, S.: Navier-stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel. In: ASME 2002 Wind Energy Symposium, pp. 94–105. American Society of Mechanical Engineers (2002)

    Google Scholar 

  22. Weihing, P., Meister, K., Schulz, C., Lutz, T. et al.: CFD simulations on interference effects between offshore wind turbines. In: Journal of Physics: Conference Series, vol. 524, p. 012143. IOP Publishing (2014)

    Google Scholar 

Download references

Acknowledgements

The present investigations were performed within the DFG PAK 780 project. The authors gratefully acknowledge the German Research Foundation (DFG) for funding the studies and the SMART BLADE GmbH as well as the Technical University of Berlin for the supply of the geometry data of the model wind turbine. The simulations have been carried out on the computational resource NEC Cluster of the HLRS Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, A., Flamm, A., Jost, E., Lutz, T., Krämer, E. (2018). Numerical Investigation of a Model Wind Turbine. In: Dillmann, A., et al. New Results in Numerical and Experimental Fluid Mechanics XI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-64519-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64519-3_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64518-6

  • Online ISBN: 978-3-319-64519-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics