Smooth and Broken Minimizers of Some Free Discontinuity Problems

  • Danilo Percivale
  • Franco TomarelliEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 22)


We show that minimizers of free discontinuity problems with energy dependent on jump integrals and Dirichlet boundary conditions are smooth provided a smallness condition is imposed on data. We examine in detail two examples: the elastic-plastic beam and the elastic-plastic plate with free yield lines. In both examples there is a gap between the condition for solvability (safe load condition) and this smallness condition (load regularity condition) which imply regularity and uniqueness of minimizers. Such gap allows the existence of damaged/creased minimizers. Eventually we produce explicit examples of irregular solutions when the load is in the gap.


Bounded Hessian functions Free discontinuity problem Safe load condition Regular minimizers Broken minimizers Plastic hinges in a beam 

AMS (MOS) Subject Classification (2010)

49J10 74K20 74K30 74R99 74C99 



This paper is dedicated to Gianni Gilardi on the occasion of his 70th Birthday.


  1. 1.
    Agmon, S.: The L p approach to the Dirichlet problem. Part I: regularity theorems. Ann. Scuola Normale Sup. Pisa, Cl. Scienze 3a S. 13(4), 405–448 (1959)Google Scholar
  2. 2.
    Alberti, G., Bouchitté, G., dal Maso, G.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Diff. Equ. 16(3), 299–333 (2003)Google Scholar
  3. 3.
    Amar, M., De Cicco, V.: The uniqueness as a generic property for some one dimensional segmentation problems. Rend. Sem. Univ. Padova 88, 151–173 (1992)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  5. 5.
    Babadjian, J.F., Chambolle, A., Lemenant, A.: Energy release rate for non smooth cracks in planar elasticity. J. l’Ecole Polytechnique - Math. 2, 117–152 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture, general ideas and hypotheses. Axially symmetric cracks. Appl. Math. Mech. (PMM) 23, 622–636 (1959)Google Scholar
  7. 7.
    Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal. 146, 23–58 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Boccellari, T., Tomarelli, F.: Generic uniqueness of minimizer for Blake & Zisserman functional. Rev. Mat. Complut. 26, 361–408 (2013). doi:10.1007/s13163-012-0103-1CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Braides, A., Fonseca, I.: Brittle thin films. Appl. Math. Opt. 44(3), 299–323 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carriero, M., Leaci, A., Tomarelli, F.: Plastic free discontinuities and special bounded hessian. C. R. Acad. Sci. Paris Sér. I Math. 314(8), 595–600 (1992)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Carriero, M., Leaci, A., Tomarelli, F.: Special Bounded Hessian and elastic-plastic plate. Rend. Accad. Naz. Sci. XL, Mem. Mat. 5(16), 223–258 (1992)Google Scholar
  12. 12.
    Carriero, M., Leaci, A., Tomarelli, F.: Strong solution for an elastic plastic plate. Calc. Var. Partial Differ. Equ. 2(2), 219–240 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Carriero, M., Leaci, A., Tomarelli, F.: A second order model in image segmentation: Blake & Zisserman functional. In: Variational Methods for Discontinuous Structures (Como, 1994), Progress in Nonlinear Differential Equations and Their Applications, vol. 25, pp. 55–72. Birkhäuser, Basel (1996)Google Scholar
  14. 14.
    Carriero, M., Leaci, A., Tomarelli, F.: Necessary conditions for extremals of Blake & Zisserman functional. C.R. Math. Acad. Sci. Paris 334(4), 343–348 (2002). doi:10.1016/S1631-073X(02)02231-8Google Scholar
  15. 15.
    Carriero, M., Leaci, A., Tomarelli, F.: Calculus of variations and image segmentation. J. Physiol. Paris 97(2–3), 343–353 (2003). doi:10.1016/j.jphysparis.2003.09.008CrossRefzbMATHGoogle Scholar
  16. 16.
    Carriero, M., Leaci, A., Tomarelli, F.: Second order variational problems with free discontinuity and free gradient discontinuity. In: Calculus of Variations: Topics from the Mathematical heritage of Ennio De Giorgi. Quaderni di Matematica, vol. 14, pp. 135–186. Department of Mathematics, Seconda University of Napoli, Caserta (2004)Google Scholar
  17. 17.
    Carriero, M., Leaci, A., Tomarelli, F.: Euler equations for Blake and Zisserman functional. Calc. Var. Partial Differ. Equ. 32(1), 81–110 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Carriero, M., Leaci, A., Tomarelli, F.: A Dirichlet problem with free gradient discontinuity. Adv. Math. Sci. Appl. 20(1), 107–141 (2010)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Carriero, M., Leaci, A., Tomarelli, F.: A candidate local minimizer of Blake & Zisserman functional. J. Math. Pures Appl. 96, 58–87 (2011). doi:10.1016/j.matpur.2011.01.005CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Carriero, M., Leaci, A., Tomarelli, F.: Image inpainting via variational approximation of a Dirichlet problem with free discontinuity. Adv. Calc.Var. 7(3), 267–295 (2014)Google Scholar
  21. 21.
    Carriero, M., Leaci, A., Tomarelli, F.: A survey on the Blake–Zisserman functional. Milan J. Math. 83, 397–420 (2015). doi:10.1007/s00032-015-0246-xCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ciarlet, P.G.: Mathematical Elasticity, vol II: Theory of Plates. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1997).zbMATHGoogle Scholar
  23. 23.
    Dal Maso, G.: Generalised functions of bounded deformation. J. Eur. Math. Soc. 15(5), 1943–1997 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Dal Maso, G., Lazzaroni, G.: Crack growth with non-interpenetration: a simplified proof for the pure Neumann problem. Discr. Cont. Continuous Dyn. Syst. 31(4), 1219–1231 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Dal Maso, G., Francfort, G., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Rat. Mech Anal. 176(2), 165–225 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    De Giorgi, E.: Free discontinuity problems in calculus of variations. In: Dautray, R. (ed.) Frontiers in Pure & Applied Mathematics, pp. 55–61. North-Holland, Amsterdam (1991)Google Scholar
  27. 27.
    De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del Calcolo delle Variazioni. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 82, 199–210 (1988)Google Scholar
  28. 28.
    De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108, 195–218 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Del Piero, G., Truskinovsky, L.: A one-dimensional model for localized and distributed failure. J. Phys. IV France 8, 95–102 (1998)Google Scholar
  30. 30.
    Del Piero, G.: Interface energies and structured deformations in plasticity. In: Variational Methods for Discontinuous Structures. PNLDE, vol. 51, pp. 103–116. Birkhäuser, Basel (2002)Google Scholar
  31. 31.
    Fonseca, I., Leoni, G., Paroni, R.: On hessian matrices in the space BH. Commun. Contemp. Math. 7, 401–420 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Griffith, A.A.: The phenomenon of rupture and flow in solids. Phyl. Trans. Roy. Soc. A 221, 163–198 (1920)CrossRefGoogle Scholar
  34. 34.
    Lü, Z.-X., Yang, X.-P.: Existence of free discontinuity problems in SBD(Ω). Nonlinear Anal. 71, 332–340 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Maddalena, F., Percivale, D., Puglisi, G., Truskinovsky, L.: Mechanics of reversible unzipping. Continuum Mech. Thermodyn. 21, 251–268 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Maddalena, F., Percivale, D., Tomarelli, F.: Elastic structures in adhesion interaction. In: Frediani, A., Buttazzo, G. (eds.) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol. 66, pp. 289–304. Springer, Berlin (2012). ISBN 978-1-4614-2434-5CrossRefGoogle Scholar
  37. 37.
    Maddalena, F., Percivale, D., Tomarelli, F.: Local and non-local energies in adhesive interaction. IMA J. Appl. Math. 81, 1051–1075 (2016)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Percivale, D.: Upper and lower bounds for Poincaré-type constants in BH. J.Convex Anal. 17, 1089–1111 (2010)Google Scholar
  39. 39.
    Percivale, D., Tomarelli, F.: Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever. Asymptot. Anal. 23(3–4), 291–311 (2000)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Percivale, D., Tomarelli, F.: From SBD to SBH: the elastic plastic plate. Interfaces Free Bound. 4(2), 137–165 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Percivale, D., Tomarelli, F.: From special bounded deformation to special bounded Hessian: the elastic plastic beam. Math. Models Methods Appl. Sci. 15(7), 1009–1058 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Percivale, D., Tomarelli, F.: Smooth and creased equilibria for elastic-plastic plates and beams. In: Variational Problems in Material Science. Progress in Nonlinear Differential Equations and Their Applications, vol. 68, pp. 127–136. Birkhäuser, Basel (2006)Google Scholar
  43. 43.
    Percivale, D., Tomarelli, F.: A variational principle for plastic hinges in a beam. Math. Models Methods Appl. Sci. 19(12), 2263–2297 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Percivale, D., Tomarelli, F.: Plastic hinges in a beam. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol. 33, pp. 343–348. Springer, Berlin (2009). ISBN 978-0-387-95856-9.CrossRefGoogle Scholar
  45. 45.
    Savaré, G., Tomarelli, F.: Superposition and chain rule for bounded Hessian functions. Adv. Math. 140(12), 237–281 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Save, M.A., Massonet, C.E.: Plastic Analysis and Design of Plates, Shells and Disks. Applied Mathematics and Mechanics. North-Holland, Amsterdam (1972)Google Scholar
  47. 47.
    Temam, R.: Problèmes Mathematiques en Plasticité. Gauthier-Vllars, Paris (1983)zbMATHGoogle Scholar
  48. 48.
    Villaggio, P.: Qualitative Methods in Elasticity. Nordhoff, Leyden (1977)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria MeccanicaUniversità di GenovaGenovaItaly
  2. 2.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations