Abstract
In this paper we propose the Hogney architecture for the deployment of malware-driven honeypots. This new concept refers to honeypots that have been dynamically configured according to the environment expected by malware. The adaptation mechanism designed here is built on services that offer up-to-date and relevant intelligence information on current threats. Thus, the Hogney architecture takes advantage of recent Indicators Of Compromise (IOC) and information about suspicious activity currently being studied by analysts. The information gathered from these services is then used to adapt honeypots to fulfill malware requirements, inviting them to unleash their full strength.
Keywords
- Honeypot
- Malware
- Adaptive
- Dynamic
- Intelligence
- IOC
This is a preview of subscription content, access via your institution.
References
Internet security threat report: vol. 21, Symantec, Technical report, 2016, April 2016
SentinelOne: Sentinelone ransomware research data summary (2017). https://go.sentinelone.com/rs/327-MNM-087/images/Data%20Summary%20-%20English.pdf
Cymmetria: Mirai open source iot honeypot (2016). http://blog.cymmetria.com/mirai-open-source-iot-honeypot-new-cymmetria-research-release
Nawrocki, M., Wählisch, M., Schmidt, T.C.: A Survey on Honeypot Software and Data Analysis. arXiv.org, vol. 10, pp. 63–75 (2016)
Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.: IoTPOT - a novel honeypot for revealing current IoT threats. JIP 24(3), 522–533 (2016)
Pauna, A., Patriciu, V.V.: CASSHH – case adaptive SSH honeypot. In: Martínez Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds.) SNDS 2014. CCIS, vol. 420, pp. 322–333. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54525-2_29
Wagener, G., State, R., Engel, T.: Adaptive and self-configurable honeypots. In: Integrated Network Management (IM) (2011)
Guarnizo, J., Tambe, A.. Bhunia, S.S., Ochoa, M., Tippenhauer, N.O., Shabtai, A., Elovici, Y.: SIPHON - Towards Scalable High-Interaction Physical Honeypots. CoRR, vol. cs.CR (2017)
Fan, W., Fernández, D., Du, Z.: Adaptive and flexible virtual honeynet. In: Boumerdassi, S., Bouzefrane, S., Renault, É. (eds.) MSPN 2015. LNCS, vol. 9395, pp. 1–17. Springer, Cham (2015). doi:10.1007/978-3-319-25744-0_1
Wagner, C., Dulaunoy, A., Wagener, G., Iklody, A.: Misp: the design and implementation of a collaborative threat intelligence sharing platform. In: Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security, pp. 49–56. ACM (2016)
G. Inc.: Virus total intelligence (2017). https://www.virustotal.com
Porcello, J.: Navigating and Visualizing the Malware Intelligence Space, pp. 1–7, November 2012
Hungenberg, T., Eckert, M.: Internet services simulation suite (2014). http://www.inetsim.org
Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The cuckoo sandbox (2012)
Angrishi, K.: Turning internet of things (IoT) into internet of vulnerabilities (IoV): Iot botnets, February 2017
Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)
Critical Stack Inc.: Critical stack intel // feed (2017). https://intel.criticalstack.com
Payload Security.: Free automated malware analysis service (2017). https://www.hybrid-analysis.com
Ramilli, M.: A machine learning dataset for everyone (2016). http://marcoramilli.blogspot.com.es/2016/12/malware-training-sets-machine-learning.html
Trinius, P., Willems, C., Holz, T., Rieck, K.: A Malware Instruction Set for Behavior-Based Analysis. Sicherheit (2010)
Acknowledgments
This work has been funded by Junta de Andalucia through the project FISICCO (TIC-07223), and by the Spanish Ministry of Economy and Competitiveness through the project IoTest (TIN2015-72634-EXP/AEI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fernandez, G., Nieto, A., Lopez, J. (2017). Modeling Malware-driven Honeypots. In: Lopez, J., Fischer-Hübner, S., Lambrinoudakis, C. (eds) Trust, Privacy and Security in Digital Business. TrustBus 2017. Lecture Notes in Computer Science(), vol 10442. Springer, Cham. https://doi.org/10.1007/978-3-319-64483-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-64483-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64482-0
Online ISBN: 978-3-319-64483-7
eBook Packages: Computer ScienceComputer Science (R0)