D-Type Cyclins and Gene Transcription

  • Gabriele Di Sante
  • Mathew C. Casimiro
  • Zhiping Li
  • Adam Ertel
  • Peter Tompa
  • Richard G. PestellEmail author
Part of the Current Cancer Research book series (CUCR)


D-type cyclins contribute the regulatory subunits to the holoenzymes that phosphorylate distinct substrates and regulate diverse biological processes, including cellular proliferation and differentiation. A growing body of evidence has demonstrated that the D-type cyclins are located in distinct subcellular pools with distinct functions. These subcellular locations include the cell membrane, the cytoplasm, the nuclear lamina, the nucleus, and DNA binding sites. The distribution of D-type cyclins in each one of these compartments is regulated by distinct signaling pathways and contributes to a vast array of biological processes. Importantly, D-type cyclins can also conduct transcriptional functions. Initially shown to regulate the activity of transcription factors in gene reporter assays, subsequent studies have shown that D-type cyclins can affect gene expression through the regulation of coactivators, the modulation of transcription factor binding in the context of chromatin, and their ability to serve as molecular scaffolds that facilitate the interactions between chromatin-modifying enzymes (histone and DNA methylases [Suv39, HP1α, G9a, DNMT1, PRMT1], histone acetylases [SRC1, p300, P/CAF], and histone deacetylases [HDAC1,3]). Genome-wide studies have shown that cyclin D1 associates with the regulatory regions of more than 2840 genes. The importance of the transcriptional functions of D-type cyclins has been demonstrated in vivo, as hormone signaling in prostate and mammary gland tissues is critically dependent upon the presence of cyclin D1. Furthermore, it is the cyclin D1-regulated gene expression signature, not the abundance of the protein, which strongly predicts poor outcome in prostate cancer. Together, these findings are consistent with the evolving realization that the D-type cyclins play an important biological role in governing gene transcription.


Cyclins Cdk transcription factor Chromatin Histone acetylation Estrogen signaling Androgen signaling 



This work was supported in part by 1R01CA137494 R01 CA 132115-05A1 (R.G.P.). The Sidney Kimmel Cancer Center was supported by the NIH Cancer Center Core Grant P30CA56036 (R.G.P). This project is funded in part from the Breast Cancer Research Foundation (R.G.P), Dr. Ralph and Marian C. Falk Medical Research Trust (R.G.P), and a grant from Pennsylvania Department of Health (R.G.P.). The department specifically disclaims responsibility for analyses, interpretations, or conclusions.

We sincerely apologize to any authors whose contributions to this field have not been fully described due to the limitations of size for this chapter.


  1. 1.
    Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocrine Rev. 1999;20(4):501–34.Google Scholar
  2. 2.
    Bregman DB, Pestell RG, Kidd VJ. Cell cycle regulation and RNA polymerase II. Front Biosci. 2000;5:D244–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Coqueret O. Linking cyclins to transcriptional control. Gene. 2002;299(1–2):35–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, Pestell RG. Histone acetylation and the cell-cycle in cancer. Front Biosci. 2001;6:D610–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Fu M, Wang C, Wang J, Zafonte BT, Lisanti MP, Pestell RG. Acetylation in hormone signaling and the cell cycle. Cytokine Growth Factor Rev. 2002;13(3):259–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004;145(12):5439–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X, Li Z, Yao TP, Pestell RG. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem. 2005;280(17):16934–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Hulit J, Wang C, Li Z, Albanese C, Rao M, Di Vizio D, Shah S, Byers SW, Mahmood R, Augenlicht LH, Russell R, Pestell RG. Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol Cell Biol. 2004;24(17):7598–611.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Nakayama J-I, Rice JC, Strahl BD, Allis CD, Grewal SIS. Role of histone H3 lysine 9 methylation in heterochromatin assembly and epigenetic gene silencing. Science. 2001;292:110–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Neumeister P, Albanese C, Balent B, Greally J, Pestell RG. Senescence and epigenetic dysregulation in cancer. Int J Biochem Cell Biol. 2002;34(11):1475–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, Balk SP, Janne OA, Palvimo JJ, Pestell RG. Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol. 2001;15(5):797–811.PubMedCrossRefGoogle Scholar
  12. 12.
    Fu M, Wang C, Rao M, Wu X, Bouras T, Zhang X, Li Z, Jiao X, Yang J, Li A, Perkins ND, Thimmapaya B, Kung AL, Munoz A, Giordano A, Lisanti MP, Pestell RG. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism. J Biol Chem. 2005;280(33):29728–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Di Sante G, Di Rocco A, Pupo C, Casimiro MC, Pestell RG. Hormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer. Oncotarget. 2017;
  14. 14.
    Bienvenu F, Barre B, Giraud S, Avril S, Coqueret O. Transcriptional regulation by a DNA-associated form of cyclin D1. Mol Biol Cell. 2005;16(4):1850–8.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, Weisz A. Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol. 2004;24(16):7260–74.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, Kunkel TA, van Harn T, Xia B, Correll M, Quackenbush J, Livingston DM, Gygi SP, Sicinski P. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230–4.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, Saria EA, Papanikolaou A, Stanek TJ, Li Z, Wang C, Fortina P, Addya S, Tozeren A, Knudsen ES, Arnold A, Pestell RG. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest. 2012;122(3):833–43.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lee YM, Sicinski P. Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human. Cell Cycle. 2006;5(18):2110–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Malumbres M, Barbacid M. Cell cycle kinases in cancer. Curr Opin Genet Dev. 2007;17(1):60–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–711.PubMedCrossRefGoogle Scholar
  21. 21.
    Hunter T, Pines J. Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell. 1994;79:573–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenthal ET, Hunt T, Ruderman JV. Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam. Spisula solidissima Cell. 1980;20(2):487–94.PubMedGoogle Scholar
  25. 25.
    Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318):512–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Xiong Y, Connolly T, Futcher B, Beach D. Human D-type cyclin. Cell. 1991;65(4):691–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2015;6(4):353.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Casimiro MC, Velasco-Velazquez M, Aguirre-Alvarado C, Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs. 2014;23(3):295–304.PubMedCrossRefGoogle Scholar
  29. 29.
    Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73:1059–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA. Physical interaction of the retinoblastoma protein with human D cyclins. Cell. 1993;73:499–511.PubMedCrossRefGoogle Scholar
  31. 31.
    Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell. 1993;73(3):487–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7:812–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Quelle DE, Ashmun RA, Shurtleff SA, Kato J-Y, Bar-Sagi D, Roussel MF, Sherr CJ. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 1993;7(8):1559–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Marampon F, Casimiro MC, Fu M, Powell MJ, Popov VM, Lindsay J, Zani BM, Ciccarelli C, Watanabe G, Lee RJ, Pestell RG. Mol Biol Cell. 2008;19(6):2566–78. Epub 2008 Mar 26. PMID:18367547PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lukas J, Bartkova J, Bartek J. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol. 1996;16(12):6917–25.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Jiang W, Kahn SM, Zhou P, Zhang Y-J, Cacace AM, Infante AS, Doi S, Santella RM, Weinstein IB. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene. 1993;8(12):3447–57.PubMedGoogle Scholar
  37. 37.
    Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14(3):1669–79.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Matsushime H, Ewen ME, Strom DK, Kato J-Y, Hanks SK, Roussel MF, Sherr CJ. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell. 1992;71:323–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994;14(3):2077–86.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kato J-Y, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7:331–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J. 1991;10:4279–90.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Kitagawa M, Higashi H, Jung H-K, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J-Y, Segawa K, Yoshida E, Nishimura S, Taya Y. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin a/E-Cdk2. EMBO J. 1996;15(24):7060–9.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines GK 3rd, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol. 2000;20(2):672–83.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature. 2001;411(6841):1017–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, Tennant RW, Weinberg RA, Yuspa SH, Conti CJ. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev. 1998;12(16):2469–74.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ganter B, Fu S, Lipsick JS. D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J. 1998;17(1):255–68.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hirai H, Sherr CJ. Interaction of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol Cell Biol. 1996;16(11):6457–67.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Inoue K, Sherr CJ. Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin- dependent-kinase-independent mechanism. Mol Cell Biol. 1998;18(3):1590–600.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Ratineau C, Petry MW, Mutoh H, Leiter AB. Cyclin D1 represses the basic helix-loop-helix transcription factor, BETA2/NeuroD. J Biol Chem. 2002;277(11):8847–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Horstmann S, Ferrari S, Klempnauer KH. Regulation of B-Myb activity by cyclin D1. Oncogene. 2000;19(2):298–306.PubMedCrossRefGoogle Scholar
  51. 51.
    Skapek SX, Rhee J, Kim PS, Novitch BG, Lassar AB. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol Cell Biol. 1996;16(12):7043–53.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Rao SS, Chu C, Kohtz DS. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol. 1994;14(8):5259–67.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Bienvenu F, Gascan H, Coqueret O. Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism. J Biol Chem. 2001;276(20):16840–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Pestell RG. New roles of cyclin D1. Am J Pathol. 2013;183(1):3–9.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Lin HM, Zhao L, Cheng SY. Cyclin D1 is a ligand-independent co-repressor for thyroid hormone receptors. J Biol Chem. 2002;277(32):28733–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Lamb J, Ladha MH, McMahon C, Sutherland RL, Ewen ME. Regulation of the functional interaction between Cyclin D1 and the estrogen receptor. Mol Cell Biol. 2000;20:8667–75.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C, Li Z, Wu K, Hulit J, Neumeister P, Novikoff PM, Brownlee M, Scherer PE, Jones JG, Whitney KD, Donehower LA, Harris EL, Rohan T, Johns DC, Pestell RG. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cel Biol. 2003;23(17):6159–73.CrossRefGoogle Scholar
  58. 58.
    Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88(3):405–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol. 1997;17(9):5338–47.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Reutens A, Watanabe G, Albanese C, Pestell RG. Cyclin D1 binds activating mutants of the androgen receptor. US 80th Endocrine Society Meeting, New Orleans. 1998. Abstract P1–528.Google Scholar
  61. 61.
    Knudsen KE, Cavenee WK, Arden KC. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 1999;59(10):2297–301.PubMedGoogle Scholar
  62. 62.
    Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell. 1993;72:309–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 1998;12(22):3488–98.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bhalla K, Liu WJ, Thompson K, Anders L, Devarakonda S, Dewi R, Buckley S, Hwang BJ, Polster B, Dorsey SG, Sun Y, Sicinski P, Girnun GD. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1alpha. Diabetes. 2014;63(10):3266–78.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci U S A. 2006;103(31):11567–72.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME. A mechanism of Cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 2003;114:323–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Yamak A, Latinkic BV, Dali R, Temsah R, Nemer M. Cyclin D2 is a GATA4 cofactor in cardiogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1415–20.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Chun T, Rho SB, Byun HJ, Lee JY, Kong G. The polycomb group gene product Mel-18 interacts with cyclin D2 and modulates its activity. FEBS Lett. 2005;579(24):5275–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Peterson LF, Boyapati A, Ranganathan V, Iwama A, Tenen DG, Tsai S, Zhang DE. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Mol Cell Biol. 2005;25(23):10205–19.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Sarruf DA, Iankova I, Abella A, Assou S, Miard S, Fajas L. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 2005;25(22):9985–95.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Wang GL, Shi X, Salisbury E, Sun Y, Albrecht JH, Smith RG, Timchenko NA. Cyclin D3 maintains growth-inhibitory activity of C/EBPalpha by stabilizing C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. Mol Cell Biol. 2006;26(7):2570–82.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Liu W, Sun M, Jiang J, Shen X, Sun Q, Liu W, Shen H, Gu J. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity. Biochem Biophys Res Commun. 2004;321(4):954–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Jian Y, Yan J, Wang H, Chen C, Sun M, Jiang J, Lu J, Yang Y, Gu J. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity. Biochem Biophys Res Commun. 2005;335(3):739–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H, Jiang J, Li Z, Hong Y, Wang H, Yun X, Gu J. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol. 2007;27(20):7125–42.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Kim Y, Kim J, Jang SW, Ko J. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Oncogene. 2015;34(2):226–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Olshavsky NA, Groh EM, Comstock CE, Morey LM, Wang Y, Revelo MP, Burd C, Meller J, Knudsen KE. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene. 2008;27(22):3111–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Reutens A, Watanabe G, Albanese C, McPhaul MJ, Balk SP, Pestell RG. Cyclin D1 binds activating mutants of the androgen receptor. US Endocrine Society Meeting, New Orleans, Louisiana. Bethesda: Endocrine Society Press; 1998. Abstract number P1-528, p. 228Google Scholar
  78. 78.
    McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME. P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci U S A. 1999;96(10):5382–7.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X, Vazquez F, Sicinski P, Shulman GI, Puigserver P. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature. 2014;510(7506):547–51.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Wang C, Fan S, Li Z, Fu M, Rao M, Ma Y, Lisanti MP, Albanese C, Katzenellenbogen BS, Kushner PJ, Weber B, Rosen EM, Pestell RG. Cyclin D1 antagonizes BRCA1 repression of estrogen receptor alpha activity. Cancer Res. 2005;65(15):6557–67.PubMedCrossRefGoogle Scholar
  81. 81.
    Adnane J, Shao Z, Robbins PD. Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp1-mediated transcription. Oncogene. 1999;18(1):239–47.PubMedCrossRefGoogle Scholar
  82. 82.
    Sternglanz R, Schindelin H. Structure and mechanism of action of the histone acetyltransferase Gcn5 and similarity to other N-acetyltransferases. Proc Natl Acad Sci U S A. 1999;96(16):8807–8.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J, Allis CD, Berger SL, Marmorstein R. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci U S A. 1999;96(16):8931–6.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Clements A, Rojas JR, Trievel RC, Wang L, Berger SL, Marmorstein R. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme a. EMBO J. 1999;18(13):3521–32.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Mizzen CA, Allis CD. Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci. 1998;54(1):6–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Dancy BM, Cole PA. Protein lysine acetylation by p300/CBP. Chem Rev. 2015;115(6):2419–52.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Savage KI, Harkin DP. BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J. 2015;282(4):630–46.PubMedCrossRefGoogle Scholar
  88. 88.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Monteiro AN, August A, Hanafusa H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A. 1996;93(24):13595–9.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Yarden RI, Brody LC. BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci U S A. 1999;96:4983–8.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science. 1999;284(5418):1354–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene. 2001;20(1):77–87.PubMedCrossRefGoogle Scholar
  93. 93.
    Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM. p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res. 2002;62(1):141–51.PubMedGoogle Scholar
  94. 94.
    Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes. 2005;29(Suppl 1):S5–9.CrossRefGoogle Scholar
  95. 95.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y, Wang C, Byers S, Nicholson R, Link T, Shemluck M, Yang J, Fricke ST, Novikoff PM, Papanikolaou A, Arnold A, Albanese C, Pestell R. Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol. 2006;26(14):5449–69.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Hanse EA, Mashek DG, Becker JR, Solmonson AD, Mullany LK, Mashek MT, Towle HC, Chau AT, Albrecht JH. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4alpha. Cell Cycle. 2012;11(14):2681–90.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Comstock CE, Augello MA, Schiewer MJ, Karch J, Burd CJ, Ertel A, Knudsen ES, Jessen WJ, Aronow BJ, Knudsen KE. Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J Biol Chem. 2011;286(10):8117–27.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Ju X, Casimiro MC, Gormley M, Meng H, Jiao X, Katiyar S, Crosariol M, Chen K, Wang M, Quong AA, Lisanti MP, Ertel A, Pestell RG. Identification of a cyclin D1 network in prostate cancer that antagonizes epithelial-mesenchymal restraint. Cancer Res. 2014;74(2):508–19.PubMedCrossRefGoogle Scholar
  100. 100.
    Hisatake K, Hasegawa S, Takada R, Nakatani Y, Horikoshi M, Roeder RG. The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature. 1993;362(6416):179–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Sekiguchi T, Miyata T, Nishimoto T. Molecular cloning of the cDNA of human X chromosomal gene (CCG1) which complements the temperature-sensitive G1 mutants, tsBN462 and ts13, of the BHK cell line. EMBO J. 1988;7(6):1683–7.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T. The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol. 1991;11(6):3317–25.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Suzuki-Yagawa Y, Guermah M, Roeder RG. The ts13 mutation in the TAFII250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature. Mol Cell Biol. 1997;17(6):3284–94.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Kim SJ, Onwuta US, Lee YI, Li R, Botchan MR, Robbins PD. The retinoblastoma gene product regulates Sp1-mediated transcription. Mol Cell Biol. 1992;12(6):2455–63.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Shao Z, Robbins PD. Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene. 1995;10(2):221–8.PubMedGoogle Scholar
  106. 106.
    Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Liu WD, Wang HW, Muguira M, Breslin MB, Lan MS. INSM1 functions as a transcriptional repressor of the neuroD/beta2 gene through the recruitment of cyclin D1 and histone deacetylases. Biochem J. 2006;397(1):169–77.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Wang C, Fu M, Pestell RG. Histone acetylation/deacetylation as a regulator of cell cycle gene expression. Methods Mol Biol. 2004;241:207–16.PubMedGoogle Scholar
  110. 110.
    Al-Sady B, Madhani HD, Narlikar GJ. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol Cell. 2013;51(1):80–91.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Li Y, Diehl JA. PRMT5-dependent p53 escape in tumorigenesis. Oncoscience. 2015;2(8):700–2.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, Herlyn M, Hua X, Rustgi AK, McMahon SB, Diehl JA. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 2010;18(4):329–40.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y, Li Z, Wasik M, Klein-Szanto AJ, Rustgi AK, Diehl JA. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov. 2015;5(3):288–303.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S, McGouran JF, Alexander L, Fedorov O, Munro S, Kessler B, Bedford MT, Yu Q, La Thangue NB. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell. 2013;52(1):37–51.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT, Odajima J, Geng Y, Zagozdzon A, Jecrois M, Young RA, Liu XS, Cepko CL, Gygi SP, Sicinski P. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463(7279):374–8.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell. 1991;65(6):1053–61.PubMedCrossRefGoogle Scholar
  117. 117.
    Raychaudhuri P, Rooney R, Nevins JR. Identification of an E1A-inducible cellular factor that interacts with regulatory sequences within the adenovirus E4 promoter. EMBO J. 1987;6(13):4073–81.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Yee AS, Raychaudhuri P, Jakoi L, Nevins JR. The adenovirus-inducible factor E2F stimulates transcription after specific DNA binding. Mol Cell Biol. 1989;9(2):578–85.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Partridge JF, La Thangue NB. A developmentally regulated and tissue-dependent transcription factor complexes with the retinoblastoma gene product. EMBO J. 1991;10(12):3819–27.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Bandara LR, Adamczewski JP, Hunt T, La Thangue NB. Cyclin a and the retinoblastoma gene product complex with a common transcription factor. Nature. 1991;352(6332):249–51.PubMedCrossRefGoogle Scholar
  121. 121.
    Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B, Pestell RG. Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol Cell Biol. 1998;18(6):3212–22.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.PubMedCrossRefGoogle Scholar
  123. 123.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Curr Biol. 2010;20(6):R285–95.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Gollin SM. Mechanisms leading to chromosomal instability. Semin Cancer Biol. 2005;15(1):33–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev. 2004;14(2):120–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature. 1999;401(6750):297–300.PubMedCrossRefGoogle Scholar
  128. 128.
    Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38(9):1043–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Casimiro MC, Di Sante G, Crosariol M, Loro E, Dampier W, Ertel A, Yu Z, Saria EA, Papanikolaou A, Li Z, Wang C, Addya S, Lisanti MP, Fortina P, Cardiff RD, Tozeren A, Knudsen ES, Arnold A, Pestell RG. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget. 2015;6(11):8525–38.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Casimiro MC, Arnold A, Pestell RG. Kinase independent oncogenic cyclin D1. Aging (Albany NY). 2015;7(7):455–6.CrossRefGoogle Scholar
  131. 131.
    Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev. 2001;15(15):2934–9.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Zhu S, Mott RT, Fry EA, Taneja P, Kulik G, Sui G, Inoue K. Cooperation between Dmp1 loss and cyclin D1 overexpression in breast cancer. Am J Pathol. 2013;183(4):1339–50.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Maglic D, Stovall DB, Cline JM, Fry EA, Mallakin A, Taneja P, Caudell DL, Willingham MC, Sui G, Inoue K. DMP1beta, a splice isoform of the tumour suppressor DMP1 locus, induces proliferation and progression of breast cancer. J Pathol. 2015;236(1):90–102.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Inoue K, Fry EA. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer. 2016;139(1):33.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Liu Q, Boudot A, Ni J, Hennessey T, Beauparlant SL, Rajabi HN, Zahnow C, Ewen ME. Cyclin D1 and C/EBPbeta LAP1 operate in a common pathway to promote mammary epithelial cell differentiation. Mol Cell Biol. 2014;34(16):3168–79.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Casimiro MC, Wang C, Li Z, Di Sante G, Willmart NE, Addya S, Chen L, Liu Y, Lisanti MP, Pestell RG. Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol Endocrinol. 2013;27(9):1415–28.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, Price RH Jr, Pestell RG, Kushner PJ. Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem. 2002;277(27):24353–60.PubMedCrossRefGoogle Scholar
  138. 138.
    Levin ER. Extranuclear estrogen receptor's roles in physiology: lessons from mouse models. Am J Physiol Endocrinol Metab. 2014;307(2):E133–40.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Li Z, Chen K, Jiao X, Wang C, Willmarth NE, Casimiro MC, Li W, Ju X, Kim SH, Lisanti MP, Katzenellenbogen JA, Pestell RG. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. Cancer Res. 2014;74(14):3959–70.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Chen Y, Martinez LA, LaCava M, Coghlan L, Conti CJ. Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene. 1998;16(15):1913–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Casimiro MC, Di Sante G, Ju X, Li Z, Chen K, Crosariol M, Yaman I, Gormley M, Meng H, Lisanti MP, Pestell RG. Cyclin D1 promotes androgen-dependent DNA damage repair in prostate cancer cells. Cancer Res. 2016;76(2):329–38.PubMedCrossRefGoogle Scholar
  142. 142.
    Marampon F, Gravina GL, Ju X, Vetuschi A, Sferra R, Casimiro MC, Pompili S, Festuccia C, Colapietro A, Gaudio E, Di Cesare E, Tombolini V, Pestell RG. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgenindependent prostate cancer cells to DNA damage. Oncotarget. 2015;7(5):5383.PubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R, Hoshida Y, Hiller D, Hu B, Jiang S, Zheng H, Stegh AH, Scott KL, Signoretti S, Bardeesy N, Wang YA, Hill DE, Golub TR, Stampfer MJ, Wong WH, Loda M, Mucci L, Chin L, DePinho RA. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470(7333):269–73.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Zhu Z, Zhang H, Lang F, Liu G, Gao D, Li B, Liu Y. Pin1 promotes prostate cancer cell proliferation and migration through activation of Wnt/beta-catenin signaling. Clin Transl Oncol. 2015;18(8):792.PubMedCrossRefGoogle Scholar
  145. 145.
    Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by Apigenin through IkappaBalpha and IKK pathway in TRAMP mice. PLoS One. 2015;10(9):e0138710.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Kumar AP, Bhaskaran S, Ganapathy M, Crosby K, Davis MD, Kochunov P, Schoolfield J, Yeh IT, Troyer DA, Ghosh R. Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron Amurense bark extract. Clin Cancer Res. 2007;13(9):2784–94.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Burd CJ, Petre CE, Morey LM, Wang Y, Revelo MP, Haiman CA, Lu S, Fenoglio-Preiser CM, Li J, Knudsen ES, Wong J, Knudsen KE. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A. 2006;103(7):2190–5.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995;11(5):1005–11.PubMedGoogle Scholar
  149. 149.
    Sawa H, Ohshima TA, Ukita H, Murakami H, Chiba Y, Kamada H, Hara M, Saito I. Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene. 1998;16:1701–12.PubMedCrossRefGoogle Scholar
  150. 150.
    Wang L, Habuchi T, Mitsumori K, Li Z, Kamoto T, Kinoshita H, Tsuchiya N, Sato K, Ohyama C, Nakamura A, Ogawa O, Kato T. Increased risk of prostate cancer associated with AA genotype of cyclin D1 gene A870G polymorphism. Int J Cancer. 2003;103(1):116–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Chen Y, Li T, Yu X, Xu J, Li J, Luo D, Mo Z, Hu Y. The RTK/ERK pathway is associated with prostate cancer risk on the SNP level: a pooled analysis of 41 sets of data from case-control studies. Gene. 2014;534(2):286–97.PubMedCrossRefGoogle Scholar
  152. 152.
    Zheng M, Wan L, He X, Qi X, Liu F, Zhang DH. Effect of the CCND1 A870G polymorphism on prostate cancer risk: a meta-analysis of 3,820 cases and 3,825 controls. World J Surg Oncol. 2015;13:55.PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–17.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences USA. 2010;107(18):8231–6.CrossRefGoogle Scholar
  155. 155.
    Yu Z, Wang L, Wang C, Ju X, Wang M, Chen K, Loro E, Li Z, Zhang Y, Wu K, Casimiro MC, Gormley M, Ertel A, Fortina P, Chen Y, Tozeren A, Liu Z, Pestell RG. Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer. Nat Commun. 2013;4:2812.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Moses RE, O'Malley BW. DNA transcription and repair: a confluence. J Biol Chem. 2012;287(28):23266–70.PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Chen R, Li W, Wang Y, O'Malley BW, Qin J. Analysis of the human endogenous coregulator complexome. Cell. 2011;145(5):787–99.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science. 2006;312(5781):1798–802.PubMedCrossRefGoogle Scholar
  159. 159.
    Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM, Parvin JD. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A. 1997;94(11):5605–10.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90:425–35.PubMedCrossRefGoogle Scholar
  161. 161.
    Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998;281(5379):1009–12.PubMedCrossRefGoogle Scholar
  162. 162.
    Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, Tomita YA, Rosen EM. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol Endocrinol. 2010;24(1):76–90.PubMedCrossRefGoogle Scholar
  163. 163.
    Lin HR, Ting NS, Qin J, Lee WH. M phase-specific phosphorylation of BRCA2 by polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem. 2003;278(38):35979–87.PubMedCrossRefGoogle Scholar
  164. 164.
    Albanese C, D'Amico M, Reutens AT, Fu M, Watanabe G, Lee RJ, Kitsis RN, Henglein B, Avantaggiati M, Somasundaram K, Thimmapaya B, Pestell RG. Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem. 1999;274:34186–95.PubMedCrossRefGoogle Scholar
  165. 165.
    Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P. Kinase-independent function of cyclin E. Mol Cell. 2007;25(1):127–39.PubMedCrossRefGoogle Scholar
  166. 166.
    Coverley D, Laman H, Laskey RA. Distinct roles for cyclins E and a during DNA replication complex assembly and activation. Nat Cell Biol. 2002;4(7):523–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Coco Martin JM. A. Balkenende, T. Verschoor, F. Lallemand, and R. Michalides, Cyclin D1 overexpression enhances radiation-induced apoptosis and radiosensitivity in a breast tumor cell line. Cancer Res. 1999;59(5):1134–40.PubMedGoogle Scholar
  168. 168.
    Zhou Q, Fukushima P, DeGraff W, Mitchell JB, Stetler Stevenson M, Ashkenazi A, Steeg PS. Radiation and the Apo2L/TRAIL apoptotic pathway preferentially inhibit the colonization of premalignant human breast cells overexpressing cyclin D1. Cancer Res. 2000;60(10):2611–5.PubMedGoogle Scholar
  169. 169.
    Agami R, Bernards R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell. 2000;102(1):55–66.PubMedCrossRefGoogle Scholar
  170. 170.
    Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B, Goradia A, Wasik MA, Klein-Szanto AJ, Rustgi AK, Bassing CH, Diehl JA. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 2007;21(22):2908–22.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, Wang M, Soutoglou E, Knudsen ES, Pestell RG. Alternative cyclin d1 splice forms differentially regulate the DNA damage response. Cancer Res. 2010;70(21):8802–11.PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Muller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res. 2014;42(16):10331–50.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Neumeister P, Pixley FJ, Xiong Y, Xie H, Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER, Pestell RG. Cyclin D1 governs adhesion and motility of macrophages. Mol Biol Cell. 2003;14(5):2005–15.PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Ju X, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cel Biol. 2006;26(11):4240–56.CrossRefGoogle Scholar
  175. 175.
    Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG. Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res. 2006;66(20):9986–94.PubMedCrossRefGoogle Scholar
  176. 176.
    Meng H, Tian L, Zhou J, Li Z, Jiao X, Li WW, Plomann M, Xu Z, Lisanti MP, Wang C, Pestell RG. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle. 2011;10(1):73–81.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83.PubMedCrossRefGoogle Scholar
  178. 178.
    Janmey PA, Wells RG, Assoian RK, McCulloch CA. From tissue mechanics to transcription factors. Differentiation. 2013;86(3):112–20.PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Kessels MM, Qualmann B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci. 2004;117(Pt 15):3077–86.PubMedCrossRefGoogle Scholar
  180. 180.
    Powers SE, Mandal M, Matsuda S, Miletic AV, Cato MH, Tanaka A, Rickert RC, Koyasu S, Clark MR. Subnuclear cyclin D3 compartments and the coordinated regulation of proliferation and immunoglobulin variable gene repression. J Exp Med. 2012;209(12):2199–213.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B. Single-cell dynamics of genome-nuclear lamina interactions. Cell. 2013;153(1):178–92.PubMedCrossRefGoogle Scholar
  182. 182.
    Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 2012;149(7):1474–87.PubMedCrossRefGoogle Scholar
  183. 183.
    Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell. 2012;150(5):934–47.PubMedCrossRefGoogle Scholar
  184. 184.
    Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med. 2009;13(6):1059–85.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gabriele Di Sante
    • 1
  • Mathew C. Casimiro
    • 1
  • Zhiping Li
    • 2
  • Adam Ertel
    • 2
  • Peter Tompa
    • 3
    • 4
    • 5
  • Richard G. Pestell
    • 1
    • 6
    Email author
  1. 1.Pennsylvania Cancer and Regenerative Medicine Research CenterBaruch S. Blumberg Institute, Pennsylvania Biotechnology CenterWynnewoodUSA
  2. 2.Department of Cancer BiologyThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.VIB center for Structural Biology (CSB)BrusselsBelgium
  4. 4.Structural Biology Brussels (SBB)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  5. 5.Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of SciencesBudapestHungary
  6. 6.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore

Personalised recommendations