The D-Type Cyclins: A Historical Perspective

  • Charles J. SherrEmail author
  • Peter Sicinski
Part of the Current Cancer Research book series (CUCR)


D-type cyclins integrate mitogen-dependent signals to enforce progression through the first gap phase (G1) of the cell division cycle. In simplest terms, three mammalian D-type cyclins (D1, D2, and D3), induced in a cell lineage-specific fashion in response to extracellular signals, interact with two cyclin-dependent kinases (CDK4 and CDK6) to form holoenzyme complexes that phosphorylate the retinoblastoma protein (RB). In turn, RB phosphorylation, reinforced by other CDKs expressed later in G1 phase, inactivates the suppressive effects of RB on transcription factors that induce genes required for DNA replication. All steps in the life history of individual D-type cyclins, including their transcriptional induction, translation, assembly with CDK4 and CDK6, and their rapid turnover via ubiquitin-mediated proteolysis, are governed by mitogen signaling. Hence, progression through the G1 phase of the mammalian cell cycle is tied to extracellular signals that ultimately influence cell division. Analysis of phenotypes of mice lacking D cyclins has highlighted their individual and combinatorial lineage-specific activities during mammalian development. The genes encoding D-type cyclins and their dependent kinases, CDK4 and CDK6, are proto-oncogenes implicated in many forms of cancer. Genetic or biochemical disruption of cyclin D-dependent CDK signaling can restrain cancer development and progression. Here, we highlight the founding discoveries.


Cell cycle G1-phase progression CDK4 CDK6 Retinoblastoma protein (RB) CDKN2A p16INK4a RB pathway Cancer Palbociclib 


  1. 1.
    Hunt T. Cyclins and their partners: from a simple idea to reality. Semin Cell Biol. 1991;2:213–22.PubMedGoogle Scholar
  2. 2.
    Dorée M, Hunt T. From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner? J Cell Sci. 2002;15:2461–4.Google Scholar
  3. 3.
    Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73:1059–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Booher R, Beach D. Site-specific mutagenesis of cdc2+, a cell cycle control gene of the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 1986;6:3523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lee MG, Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987;327:31–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Reed SI. G1-specific cyclins: in search of an S-phase promoting factor. Trends Genet. 1991;7:95–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Wittenberg C, Sugimoto K, Reed SI. G1 specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell. 1990;62:225–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of G1 cyclin, CLN2. Cell. 1990;63:999–1011.PubMedCrossRefGoogle Scholar
  11. 11.
    Pardee AB. G1 events and regulation of cell proliferation. Science. 1989;246:603–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Xiong Y, Connolly T, Futcher B, et al. Human D-type cyclin. Cell. 1991;65:691–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Matsushime H, Roussel MF, Ashmun RA, et al. Colony-stimulating factor-1 regulates novel cyclins during the G1 phase of the cell cycle. Cell. 1991;65:701–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsushime H, Roussel MF, Sherr CJ. Novel mammalian cyclin (CYL) genes expressed during G1. Cold Spring Harb Symp Quant Biol. 1991;56:69–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350:512–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Elledge SJ, Spottswood MR. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1. EMBO J. 1991;10:2653–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Tsai LH, Harlow E, Meyerson M. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature. 1991;353:174–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosenblatt J, Gu Y, Morgan DO. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci U S A. 1992;89:2824–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lew DJ, Dulić V, Reed SI. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell. 1991;66:1197–206.PubMedCrossRefGoogle Scholar
  20. 20.
    Koff A, Cross F, Fisher A, et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell. 1991;66:1217–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Ren S, Rollins BJ. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell. 2004;117:239–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Tassan JP, Jaquenoud M, Léopold P, et al. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A. 1995;92:8871–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dulić V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science. 1992;257:1958–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Koff A, Giordano A, Desai D, et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science. 1992;257:1689–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Meyerson M, Enders GH, Wu CL, et al. A family of human cdc2-related protein kinases. EMBO J. 1992;11:2909–17.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Matsushime H, Ewen ME, Strom DK, et al. Identification and properties of an atypical catalytic subunit (p34PSKJ3/cdk4) for mammalian D type G1 cyclins. Cell. 1992;71:323–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanks SK. Homology probing: identification of cDNA clones encoding members of the protein-serine kinase family. Proc Natl Acad Sci U S A. 1987;84:388–92.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell. 1989;58:1097–105.PubMedCrossRefGoogle Scholar
  30. 30.
    DeCaprio JA, Ludlow JW, Lynch D, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58:1085–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen PL, Scully P, Shew JY, et al. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58:1193–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Mihara K, Cao XR, Yen A, et al. Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science. 1989;246:1300–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Whyte P, Buchkovich KJ, Horowitz JM, et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature. 1988;334:124–9.PubMedCrossRefGoogle Scholar
  34. 34.
    DeCaprio JA, Ludlow JW, Figge J, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Dyson N, Howley PM, Münger K, et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Ludlow JW, DeCaprio JA, Huang CM, et al. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell. 1989;56:57–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Lees JA, Buchkovich KJ, Marshak DR, et al. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J. 1991;10:4279–90.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mittnacht S, Hinds PW, Dowdy SF, et al. Modulation of retinoblastoma protein activity during the cell cycle. Cold Spring Harb Symp Quant Biol. 1991;56:197–209.PubMedCrossRefGoogle Scholar
  39. 39.
    Hinds PW, Mittnacht S, Dulic V, et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell. 1992;70:993–1006.PubMedCrossRefGoogle Scholar
  40. 40.
    Cobrinik D, Dowdy SF, Hinds PW, et al. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci. 1992;17:312–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Kato J-Y, Matsushime H, Hiebert SW, et al. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7:331–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Ewen ME, Sluss HK, Sherr CJ, et al. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell. 1993;73:487–97.PubMedCrossRefGoogle Scholar
  43. 43.
    Dowdy SF, Hinds PW, Louie K, et al. Physical interaction of the retinoblastoma protein with human cyclins. Cell. 1993;73:499–511.PubMedCrossRefGoogle Scholar
  44. 44.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsushime H, Quelle DE, Shurtleff SA, et al. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol. 1994;14:2066–76.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ludlow JW, Glendening CL, Livingston DM. The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell. 1990;60:387–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994;14:2077–86.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ajchenbaum F, Ando K, DeCaprio JA, et al. Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T lymphocytes. J Biol Chem. 1993;268:4113–9.PubMedGoogle Scholar
  49. 49.
    Albanese C, Johnson J, Watanabe G, et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem. 1995;270:23589–97.PubMedCrossRefGoogle Scholar
  50. 50.
    Lavoie JN, L'Allemain G, Brunet A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996;271:20608–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol. 1997;17:3850–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Weber JD, Raben DM, Phillips PJ, et al. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J. 1997;326:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Rimerman RA, Gellert-Randleman A, Diehl JA. Wnt1 and MEK1 cooperate to promote cyclin D1 accumulation and cellular transformation. J Biol Chem. 2000;275:14736–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Watts CK, Sweeney KJ, Warlters A, et al. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1994;31:95–105.PubMedCrossRefGoogle Scholar
  56. 56.
    Musgrove EA, Lee CS, Buckley MF, et al. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A. 1994;91:8022–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Musgrove EA, Sutherland RL. Cell cycle control by steroid hormones. Semin Cancer Biol. 1994;5:381–9.PubMedGoogle Scholar
  58. 58.
    Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 1997;11:957–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Cheng M, Sexl V, Sherr CJ, et al. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A. 1998;95:1091–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 1994;8:9–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994;78:67–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Soos TJ, Kiyokawa H, Yan JS, et al. Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ. 1996;7:135–46.PubMedGoogle Scholar
  63. 63.
    Blain SW, Montalvo E, Massagué J. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem. 1997;272:25863–72.PubMedCrossRefGoogle Scholar
  64. 64.
    LaBaer J, Garrett MD, Stevenson LF, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11:847–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Mahony D, Parry DA, Lees E. Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene. 1998;16:603–11.PubMedCrossRefGoogle Scholar
  66. 66.
    McConnell BB, Gregory FJ, Stott FJ, et al. Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol. 1999;19:1981–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cheng M, Olivier P, Diehl JA, et al. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999;18:1571–83.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Geng Y, Yu Q, Sicinska E, et al. Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci U S A. 2001;98:194–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Tong W, Pollard JW. Genetic evidence for the interactions of cyclin D1 and p27(Kip1) in mice. Mol Cell Biol. 2001;21:1319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Grimmler M, Wang Y, Mund T, et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell. 2007;128:269–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Larrea MD, Liang J, Da Silva T, et al. Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol. 2008;28:6462–72.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jäkel H, Weinl C, Hengst L. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene. 2011;30:3502–12.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Huang Y, Yoon MK, Otieno S, et al. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases. J Mol Biol. 2015;427:371–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Sheaff RM, Groudine M, Gordon J, et al. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997;11:1464–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 1997;16:5334–44.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12:2245–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Nevins JR. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 1998;9:585–93.PubMedGoogle Scholar
  79. 79.
    Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002;3:11–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Balciunaite E, Spektor A, Lents NH, et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol Cell Biol. 2005;25:8166–78.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994;78:713–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Matsuoka M, Kato JY, Fisher RP, et al. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol Cell Biol. 1994;14:7265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mäkelä TP, Tassan JP, Nigg EA, et al. A cyclin associated with the CDK-activating kinase MO15. Nature. 1994;371:254–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Baldin V, Lukas J, Marcote MJ, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7:812–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3 beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12:3499–511.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Alt JR, Cleveland JL, Hannink M, et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000;14:3102–14.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fantl V, Stamp G, Andrews A, et al. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9:2364–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Sicinski P, Donaher JL, Parker SB, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82:621–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 deletion. Nature. 2001;411:1017–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Ma C, Papermaster D, Cepko CL. A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc Natl Acad Sci U S A. 1998;95:9938–43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sicinski P, Donaher JL, Geng Y, et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature. 1996;384:470–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Huard JM, Forster CC, Carter ML, et al. Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development. 1999;126:1927–35.PubMedGoogle Scholar
  93. 93.
    Lam EW, Glassford J, Banerji L, et al. Cyclin D3 compensates for loss of cyclin D2 in mouse B-lymphocytes activated via the antigen receptor and CD40. J Biol Chem. 2000;275:3479–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Solvason N, Wu WW, Parry D. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int Immunol. 2000;12:631–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kowalczyk A, Filipkowski RK, Rylski M. The critical role of cyclin D2 in adult neurogenesis. J Cell Biol. 2004;167:209–13.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sicinska E, Aifantis I, Le Cam L, et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003;4:451–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Cooper AB, Sawai CM, Sicinska E, et al. A unique function for cyclin D3 in early B cell development. Nat Immunol. 2006;7:489–97.PubMedCrossRefGoogle Scholar
  99. 99.
    Sicinska E, Lee YM, Gits J, et al. Essential role for cyclin D3 in granulocyte colony-stimulating factor-driven expansion of neutrophil granulocytes. Mol Cell Biol. 2006;26:8052–60.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Peled JU, Yu JJ, Venkatesh J, et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 2010;20:631–46.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ciemerych MA, Kenney AM, Sicinska E, et al. Development of mice expressing a single D-type cyclin. Genes Dev. 2002;16:3277–89.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kozar K, Ciemerych MA, Rebel VI, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118:477–91.PubMedCrossRefGoogle Scholar
  103. 103.
    Carthon BC, Neumann CA, Das M, et al. Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Mol Cell Biol. 2005;25:1081–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sawai CM, Freund J, Oh P, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell. 2012;22:452–65.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rane SG, Dubus P, Mettus RV, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet. 1999;22:44–52.PubMedCrossRefGoogle Scholar
  106. 106.
    Tsutsui T, Hesabi B, Moons DS, et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol. 1999;19:7011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Malumbres M, Sotillo R, Santamaría D, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004;118:493–504.PubMedCrossRefGoogle Scholar
  108. 108.
    Martín J, Hunt SL, Dubus P, et al. Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene. 2003;22:5261–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Sankaran VG, Ludwig LS, Sicinska E, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 2012;26:2075–87.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Williams ME, Swerdlow SH, Meeker TC. Chromosome t(11;14)(q13;q32) breakpoints in centrocytic lymphoma are highly localized at the bcl-1 major translocation cluster. Leukemia. 1993;7:1437–40.PubMedGoogle Scholar
  111. 111.
    Williams ME, Swerdlow SH. Cyclin D1 overexpression in non-Hodgkin's lymphoma with chromosome 11 bcl-1 rearrangement. Ann Oncol. 1994;Suppl 1:71–3.CrossRefGoogle Scholar
  112. 112.
    Salaverria I, Royo C, Carvajal-Cuenca A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121:1394–402.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.PubMedCrossRefGoogle Scholar
  114. 114.
    Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220:292–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Delmer A, Ajchenbaum-Cymbalista F, Tang R, et al. Overexpression of cyclin D2 in chronic B-cell malignancies. Blood. 1995;85:2870–6.PubMedGoogle Scholar
  117. 117.
    Suzuki R, Kuroda H, Komatsu H, et al. Selective usage of D-type cyclins in lymphoid malignancies. Leukemia. 1999;13:1335–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Sonoki T, Harder L, Horsman DE, et al. Cyclin D3 is a target gene of t(6; 14)(p21.1;q32.3) of mature B-cell malignancies. Blood. 2001;98:2837–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Clappier E, Cuccuini W, Cayuela JM, et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia. 2006;20:82–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Igawa T, Sato Y, Takata K. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci. 2011;102:2103–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Li ZM, Spagnuolo L, Mensah AA, et al. Gains of CCND3 gene in ocular adnexal MALT lymphomas: an integrated analysis. Br J Haematol. 2013;160:719–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Khatib ZA, Matsushime H, Valentine M, et al. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res. 1993;53:5535–41.PubMedGoogle Scholar
  124. 124.
    He J, Allen JR, Collins VP, et al. CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 1994;54:5804–7.PubMedGoogle Scholar
  125. 125.
    Reifenberger G, Reifenberger J, Ichimura K, et al. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res. 1994;54:4299–303.PubMedGoogle Scholar
  126. 126.
    Schmidt EE, Ichimura K, Reifenberger G, et al. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54:6321–4.PubMedGoogle Scholar
  127. 127.
    Costello JF, Plass C, Arap W, et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 1997;57:1250–4.PubMedGoogle Scholar
  128. 128.
    Nagel S, Leich E, Quentmeier H, et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia. 2007;22:387–92.PubMedCrossRefGoogle Scholar
  129. 129.
    van Dekken H, van Marion R, Vissers KJ, et al. Molecular dissection of the chromosome band 7q21 amplicon in gastroesophageal junction adenocarcinomas identifies cyclin-dependent kinase 6 at both genomic and protein expression levels. Genes Chromosomes Cancer. 2008;47:649–56.PubMedCrossRefGoogle Scholar
  130. 130.
    Tsai JW, Li CF, Kao YC, et al. Recurrent amplification at 7q21.2 targets CDK6 gene in primary myxofibrosarcomas and identifies CDK6 overexpression as an independent adverse prognosticator. Ann Surg Oncol. 2012;19:2716–25.PubMedCrossRefGoogle Scholar
  131. 131.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Lukas J, Parry D, Aagaard L, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Koh J, Enders GH, Dynlacht BD, et al. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature. 1995;375:506–10.PubMedCrossRefGoogle Scholar
  134. 134.
    Medema RH, Herrera RE, Lam F, et al. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A. 1995;92:6289–9623.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–40.PubMedCrossRefGoogle Scholar
  136. 136.
    Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371:257–61.PubMedCrossRefGoogle Scholar
  137. 137.
    Quelle DE, Zindy F, Ashmun RA, et al. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of cell cycle arrest. Cell. 1995;83:993–1000.PubMedCrossRefGoogle Scholar
  138. 138.
    Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91:639–59.CrossRefGoogle Scholar
  139. 139.
    Ranade K, Hussussian CJ, Sikorski RS, et al. Mutations associated with familial melanoma impair p16INK4 function. Nat Genet. 1995;10:114–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol. 1996;8:805–14.PubMedCrossRefGoogle Scholar
  141. 141.
    Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16:25–35.PubMedCrossRefGoogle Scholar
  142. 142.
    Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443:453–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Musgrove EA, Caldon CE, Barraclough J, et al. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.PubMedCrossRefGoogle Scholar
  144. 144.
    Reddy HK, Mettus RV, Rane SG, et al. Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res. 2005;65:10174–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Yu Q, Sicinska E, Geng Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9:23–32.PubMedCrossRefGoogle Scholar
  146. 146.
    Landis MW, Pawlyk BS, Li T, et al. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.PubMedCrossRefGoogle Scholar
  147. 147.
    Choi YJ, Li X, Hydbring P, et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell. 2012;22:438–51.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Garber K. The cancer drug that almost wasn’t. Science. 2014;345:865–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6:353–67.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Howard Hughes Medical Institute, Department of Tumor Cell BiologySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Genetics, Harvard Medical School, and Department of Cancer BiologyDana Farber Cancer InstituteBostonUSA

Personalised recommendations