Advertisement

A Minimally Invasive Endovascular Stent-Electrode Array for Chronic Recordings of Cortical Neural Activity

  • Thomas J. OxleyEmail author
  • Nicholas L. Opie
  • Sam E. John
  • Gil S. Rind
  • Stephen M. Ronayne
  • Anthony N. Burkitt
  • David B. Grayden
  • Clive N. May
  • Terence J. O’Brien
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Intracranial electrode arrays for recording and stimulating electrical brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. When compared to scalp electroencephalography (EEG), cortical recordings have demonstrated superior spatial resolution and consequently a greater potential for cognitive command output. Traditional cortical arrays require direct implantation into the brain via open craniotomy, which is a delicate and lengthy procedure. This can lead to inflammatory tissue responses amongst other clinical complications and has necessitated the development of minimally invasive methods that circumvent or mitigate brain trauma. In this study, we demonstrate the feasibility of chronically recording brain activity from within an external cerebral vein using a passive stent - electrode recording array (stentrode). We achieved implantation into a superficial cortical vein lying adjacent to the motor cortex using catheter angiography. Access was made via vascular puncture in the external jugular vein in the neck. Following successful implantation, we demonstrated neural recordings in freely moving sheep for time periods up to 190 days. Venous internal lumen patency was preserved for the duration of implantation. Spectral content and bandwidth of vascular electrocorticography were found to be comparable to those of recordings from epidural surface arrays.

Keywords

Brain computer interface (BCI) Brain machine interface (BMI) Endovascular Electrocorticography (ECoG) 

Notes

Acknowledgements

The Vascular Bionics Laboratory would like to acknowledge all participants and contributors to our work thus far. In particular, we would like to recognise the input of

The University of Melbourne

• Dept. of Medicine

• Dept. of Electrical and Electronic Engineering

The Florey Institute of Neuroscience and Mental Health

The Royal Melbourne Hospital

References

  1. 1.
    Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for parkinson’s Disease. N Engl J Med 355:896–908. doi: 10.1056/NEJMoa060281 CrossRefGoogle Scholar
  2. 2.
    Cook MJ, O’Brien TJ, Berkovic SF et al (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol 12:563–571. doi: 10.1016/S1474-4422(13)70075-9 CrossRefGoogle Scholar
  3. 3.
    Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–1304. doi: 10.1212/WNL.0b013e3182302056 CrossRefGoogle Scholar
  4. 4.
    Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171. doi: 10.1038/nature04970 CrossRefGoogle Scholar
  5. 5.
    Yanagisawa T, Hirata M, Saitoh Y et al (2012) Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol 71:353–361. doi: 10.1002/ana.22613 CrossRefGoogle Scholar
  6. 6.
    Wilson BS, Finley CC, Lawson DT et al (1991) Better speech recognition with cochlear implants. Nature 352:236–238. doi: 10.1038/352236a0 CrossRefGoogle Scholar
  7. 7.
    Weiland JD, Cho AK, Humayun MS (2011) Retinal Prostheses: Current Clinical Results and Future Needs. Ophthalmology 118:2227–2237. doi: 10.1016/j.ophtha.2011.08.042 CrossRefGoogle Scholar
  8. 8.
    Oxley TJ, Opie NL, John SE et al., Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327. doi: 10.1038/nbt.3428
  9. 9.
    Yanagisawa T, Hirata M, Saitoh Y et al (2009) Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45:1099–1106. doi: 10.1016/j.neuroimage.2008.12.069 CrossRefGoogle Scholar
  10. 10.
    Chimowitz MI, Lynn MJ, Derdeyn CP et al (2011) Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. N Engl J Med 365:993–1003. doi: 10.1056/NEJMoa1105335 CrossRefGoogle Scholar
  11. 11.
    Puffer RC, Mustafa W, Lanzino G (2013) Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature. J Neurointerv Surg 5:483–486. doi: 10.1136/neurintsurg-2012-010468 CrossRefGoogle Scholar
  12. 12.
    van der Giessen WJ, Serruys PW, van Beusekom HM et al., (1991) Coronary stenting with a new, radiopaque, balloon-expandable endoprosthesis in pigs. Circulation 83:1788LP–1798. http://circ.ahajournals.org/content/83/5/1788.abstract
  13. 13.
    Watanabe H, Takahashi H, Nakao M et al (2009) Intravascular neural interface with nanowire electrode. Electron Commun Japan 92:29–37. doi: 10.1002/ecj.10058 CrossRefGoogle Scholar
  14. 14.
    Mikuni N, Ikeda A, Murao K et al (1997) ‘Cavernous Sinus EEG’: A new method for the preoperative evaluation of temporal lobe epilepsy. Epilepsia 38:472–482. doi: 10.1111/j.1528-1157.1997.tb01738.x CrossRefGoogle Scholar
  15. 15.
    Bower MR, Stead M, Van Gompel JJ et al (2013) Intravenous recording of intracranial, broadband EEG. J Neurosci Methods 214:21–26. doi: 10.1016/j.jneumeth.2012.12.027 CrossRefGoogle Scholar
  16. 16.
    Boniface SJ, Antoun N (1997) Endovascular electroencephalography: the technique and its application during carotid amytal assessment. J Neurol Neurosurg Psychiatry 62:193–195CrossRefGoogle Scholar
  17. 17.
    Penn RD, Hilal SK, Michelsen WJ et al (1973) Intravascular intracranial EEG recording - technical note. J Neurosurg 38:239–243. doi: 10.3171/jns.1973.38.2.0239 CrossRefGoogle Scholar
  18. 18.
    Driller J, Hilal SK, Michelsen WJ et al., (1969) Development and use of the POD catheter in the cerebral vascular system. Med Res Eng 8:11–6. http://europepmc.org/abstract/MED/5823257
  19. 19.
    Lukatch HS, Kiddoo CE, Maciver MB (2005) Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex 15:1322–1331. doi: 10.1093/cercor/bhi015 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Thomas J. Oxley
    • 1
    • 2
    Email author
  • Nicholas L. Opie
    • 1
    • 2
  • Sam E. John
    • 1
    • 2
    • 3
  • Gil S. Rind
    • 1
    • 2
  • Stephen M. Ronayne
    • 1
    • 2
  • Anthony N. Burkitt
    • 3
  • David B. Grayden
    • 3
  • Clive N. May
    • 2
  • Terence J. O’Brien
    • 3
  1. 1.Vascular Bionics Laboratory, Departments of Medicine and NeurologyMelbourne Brain Centre, The Royal Melbourne Hospital, The University of MelbourneParkvilleAustralia
  2. 2.The Florey Institute of Neuroscience and Mental Health, The University of MelbourneParkvilleAustralia
  3. 3.The Department of Electrical and Electronic EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations