Skip to main content

A Sixteen-Command and 40 Hz Carrier Frequency Code-Modulated Visual Evoked Potential BCI

  • Chapter
  • First Online:
Brain-Computer Interface Research

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

We present successful results, based on testing with nine healthy users, demonstrating an innovative brain-computer interface (BCI) paradigm. The new paradigm utilizes a code- modulated visual evoked potential (cVEP), with a relatively high carrier frequency of 40 Hz (which is about the threshold that human vision can detect) using pseudo-random pattern flashing stimuli. These visual stimuli are very perceptually friendly and, due to their wide frequency spectral patterns, not prone to triggering epileptic seizures. To generate higher frequency stimulation than state-of-the-art steady-state visual evoked potential (SSVEP) or cVEP-based BCIs, we utilize the light-emitting diodes (LEDs) driven from an ARDUINO DUE board with a software generator designed by our team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolpaw J, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, New York, USA

    Google Scholar 

  2. Plum F, Posner JB (1966) The diagnosis of stupor and coma. FA Davis, Philadelphia, PA, USA

    Google Scholar 

  3. Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih S, Kuebler A (2012) P300 Brain-computer interface: current challenges and emerging trends. Front Hum Neuroeng 5:14. doi: 10.3389/fneng.2012.00014

  4. Rutkowski TM (2015) Brain-robot and speller interfaces using spatial multisensory brain- computer interface paradigms. Front Comput Neurosci Conf Abstr 14. http://www.frontiersin.org/10.3389/conf.fncom.2015.56.00014/event_abstract

  5. Rutkowski TM, Shinoda H (2015) Airborne ultrasonic tactile display contactless brain- computer interface paradigm. Front Hum Neuroscience 16:3–1. http://www.frontiersin.org/human_neuroscience/10.3389/conf.fnhum.2015.218.00016/full

  6. Rutkowski T (2016) Robotic and virtual reality BCIs using spatial tactile and auditory odd-ball paradigms. Front Neurorobotics 10:20. http://journal.frontiersin.org/article/10.3389/fnbot.2016.00020

  7. Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, LaBella V (2017) complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci 11:251. http://journal.frontiersin.org/article/10.3389/fnins.2017.00251/full

  8. Lesenfants D, Chatelle C, Saab J, Laureys S, Noirhomme, Q Chapter 6: Neurotechno- logical communication with patients with disorders of consciousness. Neurotechnology and Direct Brain Communication: New Insights and Responsibilities Concerning Speechless But Communicative Subjects, p 85

    Google Scholar 

  9. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015

    Article  Google Scholar 

  10. Waytowich N, Krusienski D (2015) Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. J Neural Eng 12(3):036006. doi: 10.1088/1741-2560/12/3/036006

  11. Reichmann H, Finke A, Ritter H (2016) Using a cVEP-based brain-computer interface to control a virtual agent. IEEE Trans Neural Syst Rehabil Eng 24(6):692–699. doi: 10.1109/TNSRE.2015.2490621

  12. Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C (2014) An electrocor- ticographic BCI using code-based VEP for control in video applications: a single-subject study. Front Syst Neurosci 8:139. http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/full

  13. Aminaka D, Makino S, Rutkowski TM (2015) Classification accuracy improvement of chromatic and high-frequency code-modulated visual evoked potential-based BCI. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain informatics and health. Lecture Notes in Computer Science, vol 9250. Springer International Publishing, London, UK, pp 232–241. http://dx.doi.org/10.1007/978-3-319-23344-4_23

  14. Aminaka D, Shimizu K, Rutkowski TM (2016) Multiuser spatial cVEP BCI direct brain-robot control. In: Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future. Asilomar Conference Center, Pacific Grove, CA USA, Verlag der Technischen Universitaet Graz, 2016, p 70

    Google Scholar 

  15. Aminaka D, Makino S, Rutkowski TM (2015) Chromatic and high-frequency cVEP-based BCI paradigm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE Engineering in Medicine and Biology Society. Milan, Italy. IEEE Press, p 1906–1909. http://arxiv.org/abs/1506.04461

  16. Aminaka D, Makino S, Rutkowski TM (2014) Chromatic SSVEP BCI paradigm targeting the higher frequency EEG responses. In: Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA), Angkor Wat, Cambodia, p 1–7. http://dx.doi.org/10.1109/APSIPA.2014.7041761

  17. Sakurada T, Kawase T, Komatsu T, Kansaku K (2014) Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Clin Neurophysiol

    Google Scholar 

  18. Rutkowski TM cVEP BCI with 16 commands and 40 Hz carrier frequency, YouTube video available online. https://youtu.be/stS3Qz6ln9E

  19. Hamada K, Mori H, Shinoda H, Rutkowski TM (2015) Airborne ultrasonic tactile display BCI. In: Brain-computer interface research. Springer International Publishing, pp 57–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Rutkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aminaka, D., Rutkowski, T.M. (2017). A Sixteen-Command and 40 Hz Carrier Frequency Code-Modulated Visual Evoked Potential BCI. In: Guger, C., Allison, B., Lebedev, M. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-64373-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64373-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64372-4

  • Online ISBN: 978-3-319-64373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics