A Sixteen-Command and 40 Hz Carrier Frequency Code-Modulated Visual Evoked Potential BCI

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

We present successful results, based on testing with nine healthy users, demonstrating an innovative brain-computer interface (BCI) paradigm. The new paradigm utilizes a code- modulated visual evoked potential (cVEP), with a relatively high carrier frequency of 40 Hz (which is about the threshold that human vision can detect) using pseudo-random pattern flashing stimuli. These visual stimuli are very perceptually friendly and, due to their wide frequency spectral patterns, not prone to triggering epileptic seizures. To generate higher frequency stimulation than state-of-the-art steady-state visual evoked potential (SSVEP) or cVEP-based BCIs, we utilize the light-emitting diodes (LEDs) driven from an ARDUINO DUE board with a software generator designed by our team.

References

  1. 1.
    Wolpaw J, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, New York, USAGoogle Scholar
  2. 2.
    Plum F, Posner JB (1966) The diagnosis of stupor and coma. FA Davis, Philadelphia, PA, USAGoogle Scholar
  3. 3.
    Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih S, Kuebler A (2012) P300 Brain-computer interface: current challenges and emerging trends. Front Hum Neuroeng 5:14. doi: 10.3389/fneng.2012.00014
  4. 4.
    Rutkowski TM (2015) Brain-robot and speller interfaces using spatial multisensory brain- computer interface paradigms. Front Comput Neurosci Conf Abstr 14. http://www.frontiersin.org/10.3389/conf.fncom.2015.56.00014/event_abstract
  5. 5.
    Rutkowski TM, Shinoda H (2015) Airborne ultrasonic tactile display contactless brain- computer interface paradigm. Front Hum Neuroscience 16:3–1. http://www.frontiersin.org/human_neuroscience/10.3389/conf.fnhum.2015.218.00016/full
  6. 6.
    Rutkowski T (2016) Robotic and virtual reality BCIs using spatial tactile and auditory odd-ball paradigms. Front Neurorobotics 10:20. http://journal.frontiersin.org/article/10.3389/fnbot.2016.00020
  7. 7.
    Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, LaBella V (2017) complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci 11:251. http://journal.frontiersin.org/article/10.3389/fnins.2017.00251/full
  8. 8.
    Lesenfants D, Chatelle C, Saab J, Laureys S, Noirhomme, Q Chapter 6: Neurotechno- logical communication with patients with disorders of consciousness. Neurotechnology and Direct Brain Communication: New Insights and Responsibilities Concerning Speechless But Communicative Subjects, p 85Google Scholar
  9. 9.
    Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015CrossRefGoogle Scholar
  10. 10.
    Waytowich N, Krusienski D (2015) Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. J Neural Eng 12(3):036006. doi: 10.1088/1741-2560/12/3/036006
  11. 11.
    Reichmann H, Finke A, Ritter H (2016) Using a cVEP-based brain-computer interface to control a virtual agent. IEEE Trans Neural Syst Rehabil Eng 24(6):692–699. doi: 10.1109/TNSRE.2015.2490621
  12. 12.
    Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C (2014) An electrocor- ticographic BCI using code-based VEP for control in video applications: a single-subject study. Front Syst Neurosci 8:139. http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/full
  13. 13.
    Aminaka D, Makino S, Rutkowski TM (2015) Classification accuracy improvement of chromatic and high-frequency code-modulated visual evoked potential-based BCI. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain informatics and health. Lecture Notes in Computer Science, vol 9250. Springer International Publishing, London, UK, pp 232–241. http://dx.doi.org/10.1007/978-3-319-23344-4_23
  14. 14.
    Aminaka D, Shimizu K, Rutkowski TM (2016) Multiuser spatial cVEP BCI direct brain-robot control. In: Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future. Asilomar Conference Center, Pacific Grove, CA USA, Verlag der Technischen Universitaet Graz, 2016, p 70Google Scholar
  15. 15.
    Aminaka D, Makino S, Rutkowski TM (2015) Chromatic and high-frequency cVEP-based BCI paradigm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE Engineering in Medicine and Biology Society. Milan, Italy. IEEE Press, p 1906–1909. http://arxiv.org/abs/1506.04461
  16. 16.
    Aminaka D, Makino S, Rutkowski TM (2014) Chromatic SSVEP BCI paradigm targeting the higher frequency EEG responses. In: Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA), Angkor Wat, Cambodia, p 1–7. http://dx.doi.org/10.1109/APSIPA.2014.7041761
  17. 17.
    Sakurada T, Kawase T, Komatsu T, Kansaku K (2014) Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Clin NeurophysiolGoogle Scholar
  18. 18.
    Rutkowski TM cVEP BCI with 16 commands and 40 Hz carrier frequency, YouTube video available online. https://youtu.be/stS3Qz6ln9E
  19. 19.
    Hamada K, Mori H, Shinoda H, Rutkowski TM (2015) Airborne ultrasonic tactile display BCI. In: Brain-computer interface research. Springer International Publishing, pp 57–65Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.BCI-LabUniversity of TsukubaTsukubaJapan
  2. 2.IntelTsukubaJapan
  3. 3.Cogent Labs IncTokyoJapan

Personalised recommendations