Mathematical Models for the Epidemiology and Evolution of Mycobacterium tuberculosis

  • Jūlija Pečerska
  • James Wood
  • Mark M. Tanaka
  • Tanja Stadler
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1019)

Abstract

This chapter reviews the use of mathematical and computational models to facilitate understanding of the epidemiology and evolution of Mycobacterium tuberculosis. First, we introduce general epidemiological models, and describe their use with respect to epidemiological dynamics of a single strain and of multiple strains of M. tuberculosis. In particular, we discuss multi-strain models that include drug sensitivity and drug resistance. Second, we describe models for the evolution of M. tuberculosis within and between hosts, and how the resulting diversity of strains can be assessed by considering the evolutionary relationships among different strains. Third, we discuss developments in integrating evolutionary and epidemiological models to analyse M. tuberculosis genetic sequencing data. We conclude the chapter with a discussion of the practical implications of modelling – particularly modelling strain diversity – for controlling the spread of tuberculosis, and future directions for research in this area.

Keywords

Strain variation Heterogeneity Population biology Phylogeny Phylodynamics Molecular epidemiology Compartmental model 

References

  1. Aandahl RZ, Reyes JF, Sisson SA, Tanaka MM (2012) A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Comput Biol 8(6):e1002573. doi:10.1371/journal.pcbi.1002573, http://dx.doi.org/10.1371/journal.pcbi.1002573
  2. Aandahl RZ, Stadler T, Sisson SA, Tanaka MM (2014) Exact vs. approximate computation: reconciling different estimates of Mycobacterium tuberculosis epidemiological parameters. Genetics 196(4):1227–1230. doi:10.1534/genetics.113.158808 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alland D, Kalkut G, Moss A, McAdam R, Hahn J, Bosworth W, Drucker E, Bloom B (1994) Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med 330(24):1710–1716CrossRefPubMedGoogle Scholar
  4. Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature 280:361–367CrossRefPubMedGoogle Scholar
  5. Andrews JR, Basu S, Dowdy DW, Murray MB (2015) The epidemiological advantage of preferential targeting of tuberculosis control at the poor. Int J Tuberc Lung Dis 19(4):375–380CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aranaz A, Romero B, Montero N, Alvarez J, Bezos J, de Juan L, Mateos A, Domínguez L (2004) Spoligotyping profile change caused by deletion of a direct variable repeat in a Mycobacterium tuberculosis isogenic laboratory strain. J Clin Microbiol 42(11):5388–5391. doi:10.1128/JCM.42.11.5388-5391.2004, http://dx.doi.org/10.1128/JCM.42.11.5388-5391.2004
  7. Basu S, Galvani AP (2009) The evolution of tuberculosis virulence. Bull Math Biol 71(5):1073–1088. doi:10.1007/s11538-009-9394-x, http://dx.doi.org/10.1007/s11538-009-9394-x
  8. Becker N (2015) Modeling to inform infectious disease control. Chapman & Hall/CRC biostatistics series. CRC Press/Taylor & Francis, Boca Raton. https://books.google.com.au/books?id=F_MQrgEACAAJ
  9. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, Bester D, Meyer M, Corrah T, Collin M, Camidge DR, Wilkinson D, Hoal-Van Helden E, Whittle HC, Amos W, van Helden P, Hill AV (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci U S A 97(14):8005–8009. doi:10.1073/pnas.140201897, http://dx.doi.org/10.1073/pnas.140201897
  10. Blower SM, Gerberding JL (1998) Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework. J Mol Med (Berl) 76(9):624–636CrossRefGoogle Scholar
  11. Blower SM, McLean AR, Porco TC, Small PM, Hopewell PC, Sanchez MA, Moss AR (1995) The intrinsic transmission dynamics of tuberculosis epidemics. Nature Med 1:815–821CrossRefPubMedGoogle Scholar
  12. Blower SM, Small PM, Hopewell PC (1996) Control strategies for tuberculosis epidemics: new models for old problems. Science 273:497–500CrossRefPubMedGoogle Scholar
  13. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borgdorff MW, van den Hof S, Kalisvaart N, Kremer K, van Soolingen D (2011) Influence of sampling on clustering and associations with risk factors in the molecular epidemiology of tuberculosis. Am J Epidemiol 174(2):243–251. doi:10.1093/aje/kwr061, http://dx.doi.org/10.1093/aje/kwr061
  15. Borrell S, Gagneux S (2011) Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 17(6):815–820. doi:10.1111/j.1469-0691.2011.03556.x, http://www.ncbi.nlm.nih.gov/pubmed/21682802
  16. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537. doi:10.1371/journal.pcbi.1003537, http://www.ncbi.nlm.nih.gov/pubmed/24722319
  18. Brooks-Pollock E, Becerra MC, Goldstein E, Cohen T, Murray MB (2011) Epidemiologic inference from the distribution of tuberculosis cases in households in Lima, Peru. J Infect Dis 203(11):1582–1589. doi:10.1093/infdis/jir162, http://www.ncbi.nlm.nih.gov/pubmed/21592987
  19. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuño L, Arora J, Baumanis V et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  20. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniewski F (2014) Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 46(3):279–286. doi:10.1038/ng.2878, http://www.ncbi.nlm.nih.gov/pubmed/24464101
  21. Cave MD, Eisenach KD, McDermott PF, Bates JH, Crawford JT (1991) IS 6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 5(1):73–80Google Scholar
  22. Chang ST, Linderman JJ, Kirschner DE (2005) Multiple mechanisms allow Mycobacterium tuberculosis to continuously inhibit MHC class II-mediated antigen presentation by macrophages. Proc Natl Acad Sci U S A 102(12):4530–4535CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chindelevitch L, Colijn C, Moodley P, Wilson D, Cohen T (2016) ClassTR: classifying within-host heterogeneity based on tandem repeats with application to Mycobacterium tuberculosis infections. PLoS Comput Biol 12(2):e1004475. doi:10.1371/journal.pcbi.1004475, http://dx.doi.org/10.1371/journal.pcbi.1004475
  24. Chisholm RH, Tanaka MM (2016) The emergence of latent infection in the early evolution of Mycobacterium tuberculosis. Proc Biol Sci 283(1831). doi:10.1098/rspb.2016.0499, http://dx.doi.org/10.1098/rspb.2016.0499
  25. Chisholm RH, Trauer JM, Curnoe D, Tanaka MM (2016) Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci U S A 113(32):9051–9056. doi:10.1073/pnas.1603224113 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10(10):1117–1121. doi:10.1038/nm1110, http://dx.doi.org/10.1038/nm1110
  27. Cohen T, Lipsitch M, Walensky RP, Murray M (2006) Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad Sci U S A 103(18):7042–7047. doi:10.1073/pnas.0600349103, https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646493800&partnerID=40&md5=affd24e21a2915b31375d88cb57caf88
  28. Cohen T, van Helden PD, Wilson D, Colijn C, McLaughlin MM, Abubakar I, Warren RM (2012) Mixed-strain Mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control. Clin Microbiol Rev 25(4):708–719. doi:10.1128/CMR.00021-12, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867198547&partnerID=40&md5=bb6952b52ec058f2821621f8f8b3c52d
  29. Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9(3):e91024. doi:10.1371/journal.pone.0091024, http://dx.doi.org/10.1371/journal.pone.0091024
  30. Colijn C, Cohen T, Murray M (2009) Latent coinfection and the maintenance of strain diversity. Bull Math Biol 71(1):247–263. doi:10.1007/s11538-008-9361-y, http://dx.doi.org/10.1007/s11538-008-9361-y
  31. Colijn C, Cohen T, Ganesh A, Murray M (2011) Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One 6(3):e18327. doi:10.1371/journal.pone.0018327, http://dx.doi.org/10.1371/journal.pone.0018327
  32. Comas I, Gagneux S (2011) A role for systems epidemiology in tuberculosis research. Trends Microbiol 19(10):492–500CrossRefPubMedPubMedCentralGoogle Scholar
  33. Comas I, Homolka S, Niemann S, Gagneux S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4(11):e7815. doi:10.1371/journal.pone.0007815, http://dx.doi.org/10.1371/journal.pone.0007815
  34. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G et al (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182CrossRefPubMedPubMedCentralGoogle Scholar
  35. Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26(6):431–444. doi:10.1016/j.smim.2014.09.012, https://www.ncbi.nlm.nih.gov/pubmed/25453224
  36. de Boer AS, Borgdorff MW, de Haas PE, Nagelkerke NJ, van Embden JD, van Soolingen D (1999) Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J Infect Dis 180(4):1238–1244. doi:10.1086/314979, http://dx.doi.org/10.1086/314979
  37. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N (2012) SITVITWEB – a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12(4):755–766CrossRefPubMedGoogle Scholar
  38. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91(8):3166–3170CrossRefPubMedPubMedCentralGoogle Scholar
  39. Didelot X, Gardy J, Colijn C (2014) Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 31(7):1869–1879. doi:10.1093/molbev/msu121, http://dx.doi.org/10.1093/molbev/msu121
  40. Didelot X, Fraser C, Gardy J, Colijn C (2017) Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol Biol Evol 34(4):997–1007.PubMedGoogle Scholar
  41. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, ChichesterGoogle Scholar
  42. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4). doi:10.1007/bf00178324
  43. Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2(1):23–41CrossRefPubMedGoogle Scholar
  44. Dowdy DW, Dye C, Cohen T (2013) Data needs for evidence-based decisions: a tuberculosis modeler’s ‘wish list’. Int J Tuberc Lung Dis 17(7):866–877. doi:10.5588/ijtld.12.0573, http://www.ncbi.nlm.nih.gov/pubmed/23743307
  45. Dowdy DW, Houben R, Cohen T, Pai M, Cobelens F, Vassall A, Menzies NA, Gomez GB, Langley I, Squire SB, White R (2014) Impact and cost-effectiveness of current and future tuberculosis diagnostics: the contribution of modelling. Int J Tuberc Lung Dis 18(9):1012–1018CrossRefPubMedPubMedCentralGoogle Scholar
  46. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88. doi:10.1371/journal.pbio.0040088, https://www.ncbi.nlm.nih.gov/pubmed/16683862
  47. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8):1969–1973. doi:10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dye C, Espinal MA (2001) Will tuberculosis become resistant to all antibiotics? Proc R Soc Lond B Biol Sci 268(1462):45–52CrossRefGoogle Scholar
  49. Dye C, Williams BG (2000) Criteria for the control of drug-resistant tuberculosis. Proc Natl Acad Sci U S A 97(14):8180–8185CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dye C, Williams BG (2009) Slow elimination of multidrug-resistant tuberculosis. Sci Transl Med 1(3):3ra8. doi:10.1126/scitranslmed.3000346, http://dx.doi.org/10.1126/scitranslmed.3000346
  51. Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328(5980):856–861CrossRefPubMedGoogle Scholar
  52. Dye C, Garnett GP, Sleeman K, Williams BG (1998) Prospects for worldwide tuberculosis control under the WHO DOTS strategy. The Lancet 352(9144):1886–1891. http://dx.doi.org/10.1016/S0140-6736(98)03199-7, http://www.sciencedirect.com/science/article/pii/S0140673698031997
  53. Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3(1):87–112CrossRefPubMedGoogle Scholar
  54. Ewens WJ (2004) Mathematical population genetics 1: theoretical introduction, vol 27, 2nd edn. Springer, New YorkGoogle Scholar
  55. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27(4):401–410. doi:10.2307/2412923, <GotoISI>://WOS:A1978GH36300002
  56. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. doi:10.1007/bf01734359, http://www.ncbi.nlm.nih.gov/pubmed/7288891
  57. Felsenstein J (2004) Inferring phylogenies, vol 2. Sinauer Associates SunderlandGoogle Scholar
  58. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, Bobadilla del Valle M, Fyfe J, Garcia-Garcia L, Rastogi N, Sola C, Zozio T, Guerrero MI, Leon CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendon A, Sifuentes-Osornio J, Ponce de Leon A, Cave MD, Fleischmann R, Whittam TS, Alland D (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188(2):759–772. doi:10.1128/JB.188.2.759-772.2006, http://www.ncbi.nlm.nih.gov/pubmed/16385065
  59. Fine PE, Vynnycky E (1998) The effect of heterologous immunity upon the apparent efficacy of (e.g. bcg) vaccines. Vaccine 16(20):1923–1928. http://dx.doi.org/10.1016/S0264-410X(98)00124-8, http://www.sciencedirect.com/science/article/pii/S0264410X98001248
  60. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43(5):482–486. doi:10.1038/ng.811, http://dx.doi.org/10.1038/ng.811
  61. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45(7): 784–790CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc B 367(1590):850–859CrossRefGoogle Scholar
  63. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337. doi:10.1016/S1473-3099(07)70108-1, http://dx.doi.org/10.1016/S1473-3099(07)70108-1
  64. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312(5782):1944–1946. doi:10.1126/science.1124410, http://dx.doi.org/10.1126/science.1124410
  65. Galagan JE (2014) Genomic insights into tuberculosis. Nat Rev Genet 15(5):307–320. doi:10.1038/nrg3664, http://dx.doi.org/10.1038/nrg3664
  66. Gammack D, Doering CR, Kirschner DE (2004) Macrophage response to Mycobacterium tuberculosis infection. J Math Biol 48(2): 218–242CrossRefPubMedGoogle Scholar
  67. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJM, Brinkman FSL, Brunham RC, Tang P (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739. doi:10.1056/NEJMoa1003176, http://dx.doi.org/10.1056/NEJMoa1003176
  68. Glynn JR, Bauer J, de Boer AS, Borgdorff MW, Fine PE, Godfrey-Faussett P, Vynnycky E (1999a) Interpreting DNA fingerprint clusters of Mycobacterium tuberculosis. European Concerted Action on Molecular Epidemiology and Control of Tuberculosis. Int J Tuberc Lung Dis 3(12):1055–1060Google Scholar
  69. Glynn JR, Vynnycky E, Fine PE (1999b) Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. Am J Epidemiol 149(4):366–371Google Scholar
  70. Gomes MGM, Franco AO, Gomes MC, Medley GF (2004) The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc Biol Sci 271(1539):617–623. doi:10.1098/rspb.2003.2606, http://dx.doi.org/10.1098/rspb.2003.2606
  71. Grant A, Arnold C, Thorne N, Gharbia S, Underwood A (2008) Mathematical modelling of Mycobacterium tuberculosis VNTR loci estimates a very slow mutation rate for the repeats. J Mol Evol 66(6):565–574. doi:10.1007/s00239-008-9104-6, http://dx.doi.org/10.1007/s00239-008-9104-6
  72. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, Holmes EC (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303(5656):327–332. doi:10.1126/science.1090727, http://dx.doi.org/10.1126/science.1090727
  73. Hasegawa M, Kishino H, Yano Ta (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2): 160–174CrossRefPubMedGoogle Scholar
  74. Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I (2016) Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 14:21. doi:10.1186/s12916-016-0566-x, https://www.ncbi.nlm.nih.gov/pubmed/27005433
  75. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311. doi:10.1371/journal.pbio.0060311, http://dx.doi.org/10.1371/journal.pbio.0060311
  76. Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22(7):1561–1568. doi:10.1093/molbev/msi145, http://dx.doi.org/10.1093/molbev/msi145
  77. Houk VN (1980) Spread of tuberculosis via recirculated air in a naval vessel: the Byrd study. Ann N Y Acad Sci 353:10–24. http://www.ncbi.nlm.nih.gov/pubmed/6939378 CrossRefPubMedGoogle Scholar
  78. de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, McAdam KP, Corrah T, Small PM, Adegbola RA (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198(7):1037–1043. doi:10.1086/591504, https://www.ncbi.nlm.nih.gov/pubmed/18702608
  79. Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132CrossRefGoogle Scholar
  80. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914PubMedPubMedCentralGoogle Scholar
  81. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, PrincetonGoogle Scholar
  82. Kendall EA, Fofana MO, Dowdy DW (2015) Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med 3(12):963–972. doi:10.1016/s2213-2600(15)00458-0 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics. Proc R Soc Ser 115:700–721CrossRefGoogle Scholar
  84. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120CrossRefPubMedGoogle Scholar
  85. Knight GM, Colijn C, Shrestha S, Fofana M, Cobelens F, White RG, Dowdy DW, Cohen T (2015) The distribution of fitness costs of resistance-conferring mutations is a key determinant for the future burden of drug-resistant tuberculosis: a model-based analysis. Clin Infect Dis 61(Suppl 3):S147–S154. doi:10.1093/cid/civ579, http://dx.doi.org/10.1093/cid/civ579
  86. Kühnert D, Stadler T, Vaughan TG, Drummond AJ (2014) Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model. J R Soc Interface 11(94):20131106. doi:10.1098/rsif.2013.1106, http://dx.doi.org/10.1098/rsif.2013.1106
  87. Kühnert D, Stadler T, Vaughan TG, Drummond AJ (2016) Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol Biol Evol. doi:10.1093/molbev/msw064, http://dx.doi.org/10.1093/molbev/msw064
  88. Lillebaek T, Norman A, Rasmussen EM, Marvig RL, Folkvardsen DB, Andersen ÅB, Jelsbak L (2016) Substantial molecular evolution and mutation rates in prolonged latent Mycobacterium tuberculosis infection in humans. Int J Med Microbiol. doi:10.1016/j.ijmm.2016.05.017, http://dx.doi.org/10.1016/j.ijmm.2016.05.017
  89. Linderman JJ, Kirschner DE (2015) In silico models of m. tuberculosis infection provide a route to new therapies. Drug Discov Today Dis Models 15:37–41. http://dx.doi.org/10.1016/j.ddmod.2014.02.006, http://www.sciencedirect.com/science/article/pii/S1740675714000115. Computational models of lung diseases
  90. Lipsitch M, Levin BR (1997) The within-host population dynamics of antibacterial chemotherapy: conditions for the evolution of resistance. Ciba Found Symp 207:112–127; discussion 127–130PubMedGoogle Scholar
  91. Liu X, Gutacker MM, Musser JM, Fu YX (2006) Evidence for recombination in Mycobacterium tuberculosis. J Bacteriol 188(23):8169–8177. doi:10.1128/JB.01062-06, http://www.ncbi.nlm.nih.gov/pubmed/16997954
  92. Luciani F, Francis AR, Tanaka MM (2008) Interpreting genotype cluster sizes of Mycobacterium tuberculosis isolates typed with IS6110 and spoligotyping. Infect Genet Evol 8(2):182–190. doi:10.1016/j.meegid.2007.12.004, http://dx.doi.org/10.1016/j.meegid.2007.12.004
  93. Luciani F, Sisson SA, Jiang H, Francis AR, Tanaka MM (2009) The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106(34):14711–14715. doi:10.1073/pnas.0902437106, http://dx.doi.org/10.1073/pnas.0902437106
  94. Marino S, Gideon HP, Gong C, Mankad S, McCrone JT, Lin PL, Linderman JJ, Flynn JL, Kirschner DE (2016) Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome. PLoS Comput Biol 12(4):e1004804CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19(4):658–685. doi:10.1128/CMR.00061-05, http://dx.doi.org/10.1128/CMR.00061-05
  96. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA (2012) Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med. 9(11). doi:10.1371/journal.pmed.1001347, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870266092&partnerID=40&md5=557a31f6d3f2341c03f44cb526513bdf
  97. Mills HL, Cohen T, Colijn C (2013) Community-wide isoniazid preventive therapy drives drug-resistant tuberculosis: a model-based analysis. Sci Transl Med 5(180). doi:10.1126/scitranslmed.3005260, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877765955&partnerID=40&md5=feec00c0015ae17a30d3181030db7f0c
  98. Murray M (2002a) Determinants of cluster distribution in the molecular epidemiology of tuberculosis. Proc Natl Acad Sci U S A 99(3):1538–1543Google Scholar
  99. Murray M (2002b) Sampling bias in the molecular epidemiology of tuberculosis. Emerg Infect Dis 8(4):363–369Google Scholar
  100. Murray M, Alland D (2002) Methodological problems in the molecular epidemiology of tuberculosis. Am J Epidemiol 155(6):565–571CrossRefPubMedGoogle Scholar
  101. O’Neill MB, Mortimer TD, Pepperell CS (2015) Diversity of Mycobacterium tuberculosis across evolutionary scales. PLoS Pathog 11(11):e1005257. doi:10.1371/journal.ppat.1005257, http://dx.doi.org/10.1371/journal.ppat.1005257
  102. Outhred AC, Holmes N, Sadsad R, Martinez E, Jelfs P, Hill-Cawthorne GA, Gilbert GL, Marais BJ, Sintchenko V (2016) Identifying likely transmission pathways within a 10-Year community outbreak of tuberculosis by high-depth whole genome sequencing. PLoS One 11(3):e0150550. doi:10.1371/journal.pone.0150550, https://www.ncbi.nlm.nih.gov/pubmed/26938641
  103. Ozcaglar C, Shabbeer A, Vandenberg S, Yener B, Bennett KP (2011) Sublineage structure analysis of Mycobacterium tuberculosis complex strains using multiple-biomarker tensors. BMC Genomics 12(Suppl 2):S1. doi:10.1186/1471-2164-12-S2-S1, http://dx.doi.org/10.1186/1471-2164-12-S2-S1
  104. Ozcaglar C, Shabbeer A, Vandenberg SL, Yener B, Bennett KP (2012) Epidemiological models of Mycobacterium tuberculosis complex infections. Math Biosci 236(2):77–96. doi:10.1016/j.mbs.2012.02.003, http://dx.doi.org/10.1016/j.mbs.2012.02.003
  105. Pankhurst LJ, Del Ojo Elias C, Votintseva AA, Walker TM, Cole K, Davies J, Fermont JM, Gascoyne-Binzi DM, Kohl TA, Kong C, Lemaitre N, Niemann S, Paul J, Rogers TR, Roycroft E, Smith EG, Supply P, Tang P, Wilcox MH, Wordsworth S, Wyllie D, Xu L, Crook DW, Group CTS (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4(1):49–58. doi:10.1016/S2213-2600(15)00466-X, https://www.ncbi.nlm.nih.gov/pubmed/26669893
  106. Plazzotta G, Cohen T, Colijn C (2015) Magnitude and sources of bias in the detection of mixed strain M. tuberculosis infection. J Theor Biol 368:67–73CrossRefPubMedGoogle Scholar
  107. Pybus OG, Drummond AJ, Nakano T, Robertson BH, Rambaut A (2003) The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. Mol Biol Evol 20(3):381–387. doi:10.1093/molbev/msg043, https://www.ncbi.nlm.nih.gov/pubmed/12644558
  108. Ragheb MN, Ford CB, Chase MR, Lin PL, Flynn JL, Fortune SM (2013) The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection. BMC Genomics 14:145. doi:10.1186/1471-2164-14-145, http://dx.doi.org/10.1186/1471-2164-14-145
  109. Rangaka MX, Cavalcante SC, Marais BJ, Thim S, Martinson NA, Swaminathan S, Chaisson RE (2015) Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet 386(10010):2344–2353. doi:10.1016/S0140-6736(15)00323-2, https://www.ncbi.nlm.nih.gov/pubmed/26515679
  110. Reyes JF, Tanaka MM (2010) Mutation rates of spoligotypes and variable numbers of tandem repeat loci in Mycobacterium tuberculosis. Infect Genet Evol 10(7):1046–1051. doi:10.1016/j.meegid.2010.06.016, http://dx.doi.org/10.1016/j.meegid.2010.06.016
  111. Reyes JF, Francis AR, Tanaka MM (2008) Models of deletion for visualizing bacterial variation: an application to tuberculosis spoligotypes. BMC Bioinformatics 9:496. doi:10.1186/1471-2105-9-496, http://dx.doi.org/10.1186/1471-2105-9-496
  112. Reyes JF, Chan CHS, Tanaka MM (2012) Impact of homoplasy on variable numbers of tandem repeats and spoligotypes in Mycobacterium tuberculosis. Infect Genet Evol 12(4):811–818. doi:10.1016/j.meegid.2011.05.018, http://dx.doi.org/10.1016/j.meegid.2011.05.018
  113. Rosenberg NA, Tsolaki AG, Tanaka MM (2003) Estimating change rates of genetic markers using serial samples: applications to the transposon IS6110 in Mycobacterium tuberculosis. Theor Popul Biol 63(4):347–363CrossRefPubMedGoogle Scholar
  114. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. http://www.ncbi.nlm.nih.gov/pubmed/3447015 PubMedGoogle Scholar
  115. Sergeev R, Colijn C, Cohen T (2011) Models to understand the population-level impact of mixed strain M. tuberculosis infections. J Theor Biol 280(1):88–100. doi:10.1016/j.jtbi.2011.04.011, http://dx.doi.org/10.1016/j.jtbi.2011.04.011
  116. Shabbeer A, Cowan LS, Ozcaglar C, Rastogi N, Vandenberg SL, Yener B, Bennett KP (2012a) TB-Lineage: an online tool for classification and analysis of strains of Mycobacterium tuberculosis complex. Infect Genet Evol 12(4):789–797. doi:10.1016/j.meegid.2012.02.010, http://dx.doi.org/10.1016/j.meegid.2012.02.010
  117. Shabbeer A, Ozcaglar C, Yener B, Bennett KP (2012b) Web tools for molecular epidemiology of tuberculosis. Infect Genet Evol 12(4):767–781. doi:10.1016/j.meegid.2011.08.019, http://dx.doi.org/10.1016/j.meegid.2011.08.019
  118. Shrestha S, Knight GM, Fofana M, Cohen T, White RG, Cobelens F, Dowdy DW (2014) Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis. Open Forum Infect Dis 1(2):ofu073. doi:10.1093/ofid/ofu073, http://dx.doi.org/10.1093/ofid/ofu073
  119. Small PM, Hopewell PC, Singh SP, Paz A, Parsonnet J, Ruston DC, Schecter GF, Daley CL, Schoolnik GK (1994) The epidemiology of tuberculosis in San Francisco: a population-based study using conventional and molecular methods. N Engl J Med 330:1703–1709CrossRefPubMedGoogle Scholar
  120. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7(7):537–544. doi:10.1038/nrmicro2165, http://dx.doi.org/10.1038/nrmicro2165
  121. Stadler T (2011) Inferring epidemiological parameters on the basis of allele frequencies. Genetics 188(3):663–672. doi:10.1534/genetics.111.126466, http://dx.doi.org/10.1534/genetics.111.126466
  122. Stadler T, Bonhoeffer S (2013) Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods. Philos Trans R Soc B: Biolog Sci 368(1614):20120198CrossRefGoogle Scholar
  123. Stadler T, Kouyos RD, von Wyl V, Yerly S, Böni J, Bürgisser P, Klimkait T, Joos B, Rieder P, Xie D, Günthard HF, Drummond A, Bonhoeffer S, the Swiss HIV Cohort Study (2012) Estimating the basic reproductive number from viral sequence data. Mol Biol Evol 29:347–357CrossRefGoogle Scholar
  124. Stadler T, Kuhnert D, Bonhoeffer S, Drummond AJ (2013) Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc Natl Acad Sci U S A 110(1):228–233. doi:10.1073/pnas.1207965110, http://www.ncbi.nlm.nih.gov/pubmed/23248286
  125. Steel M (2013) Consistency of bayesian inference of resolved phylogenetic trees. J Theor Biol 336:246–249CrossRefPubMedGoogle Scholar
  126. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526PubMedGoogle Scholar
  128. Tanaka MM, Francis AR (2005) Methods of quantifying and visualising outbreaks of tuberculosis using genotypic information. Infect Genet Evol 5(1):35–43. doi:10.1016/j.meegid.2004.06.001, http://dx.doi.org/10.1016/j.meegid.2004.06.001
  129. Tanaka MM, Rosenberg NA, Small PM (2004) The control of copy number of IS6110 in Mycobacterium tuberculosis. Mol Biol Evol 21(12):2195–2201. doi:10.1093/molbev/msh234, http://dx.doi.org/10.1093/molbev/msh234
  130. Tanaka MM, Francis AR, Luciani F, Sisson SA (2006) Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data. Genetics 173(3):1511–1520. doi:10.1534/genetics.106.055574, http://dx.doi.org/10.1534/genetics.106.055574
  131. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  132. To TH, Jung M, Lycett S, Gascuel O (2016) Fast Dating Using Least-Squares Criteria and Algorithms. Syst Biol 65(1):82–97. doi:10.1093/sysbio/syv068, http://www.ncbi.nlm.nih.gov/pubmed/26424727
  133. Trauer JM, Denholm JT, McBryde ES (2014) Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. J Theor Biol 358:74–84. doi:10.1016/j.jtbi.2014.05.023, http://dx.doi.org/10.1016/j.jtbi.2014.05.023
  134. Vogler AJ, Keys C, Nemoto Y, Colman RE, Jay Z, Keim P (2006) Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7. J Bacteriol 188(12):4253–4263. doi:10.1128/JB.00001-06, http://dx.doi.org/10.1128/JB.00001-06
  135. Volz EM (2012) Complex population dynamics and the coalescent under neutrality. Genetics 190(1):187–201. doi:10.1534/genetics.111.134627, http://dx.doi.org/10.1534/genetics.111.134627
  136. Volz EM, Kosakovsky Pond SL, Ward MJ, Leigh Brown AJ, Frost SDW (2009) Phylodynamics of infectious disease epidemics. Genetics 183(4):1421–1430. doi:10.1534/genetics.109.106021, http://dx.doi.org/10.1534/genetics.109.106021
  137. Vynnycky E, Fine PEM (1997) The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect 119(2):183–201. doi:10.1017/S0950268897007917,<GotoISI>://WOS:A1997YD95900010
  138. Waaler H, Geser A, Andersen S (1962) The use of mathematical models in the study of the epidemiology of tuberculosis. Am J Public Health Nat Health 52(6):1002–1013CrossRefGoogle Scholar
  139. Wakeley J (2009) Coalescent theory: an introduction. Roberts and Co., Greenwood VillageGoogle Scholar
  140. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW et al (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13(2):137–146CrossRefPubMedPubMedCentralGoogle Scholar
  141. Warren RM, van der Spuy GD, Richardson M, Beyers N, Borgdorff MW, Behr MA, van Helden PD (2002) Calculation of the stability of the IS6110 banding pattern in patients with persistent Mycobacterium tuberculosis disease. J Clin Microbiol 40(5): 1705–1708CrossRefPubMedPubMedCentralGoogle Scholar
  142. Warren RM, Victor TC, Streicher EM, Richardson M, Beyers N, Gey van Pittius NC, van Helden PD (2004) Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med 169(5):610–614. doi:10.1164/rccm.200305-714OC, http://dx.doi.org/10.1164/rccm.200305-714OC
  143. Weniger T, Krawczyk J, Supply P, Harmsen D, Niemann S (2012) Online tools for polyphasic analysis of Mycobacterium tuberculosis complex genotyping data: now and next. Infect Genet Evol 12(4):748–754CrossRefPubMedGoogle Scholar
  144. WHO (2016) Global tuberculosis report 2016. Tech. rep., World Health OrganizationGoogle Scholar
  145. Wigginton JE, Kirschner D (2001) A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol 166(3):1951–1967Google Scholar
  146. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, van Soolingen D, Rüsch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160. doi:10.1371/journal.ppat.1000160, http://dx.doi.org/10.1371/journal.ppat.1000160
  147. Yang Z (1994a) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39(3):306–314. doi:10.1007/BF00160154, http://www.ncbi.nlm.nih.gov/pubmed/7932792
  148. Yang Z (1994b) Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. Syst Biol 43(3):329–342Google Scholar
  149. Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11(9):367–372. doi:10.1016/0169-5347(96)10041-0 CrossRefPubMedGoogle Scholar
  150. Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  151. Zainuddin Z, Dale J (1990) Does Mycobacterium tuberculosis have plasmids? Tubercle 71:43–49. doi:10.1016/0041-3879(90)90060-L, http://www.sciencedirect.com/science/article/pii/004138799090060L
  152. Zheng N, Whalen CC, Handel A (2014) Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency. PLoS One 9(8):e105721. doi:10.1371/journal.pone.0105721, http://dx.doi.org/10.1371/journal.pone.0105721
  153. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. Evol Genes Proteins 97:97–166CrossRefGoogle Scholar
  154. Zwerling A, Gomez GB, Pennington J, Cobelens F, Vassall A, Dowdy DW (2016) A simplified cost-effectiveness model to guide decision-making for shortened anti-tuberculosis treatment regimens. Int J Tuberc Lung Dis 20(2):257–260CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jūlija Pečerska
    • 1
  • James Wood
    • 2
  • Mark M. Tanaka
    • 3
  • Tanja Stadler
    • 1
  1. 1.Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
  2. 2.School of Public Health and Community MedicineUNSW SydneySydneyAustralia
  3. 3.School of Biotechnology & Biomolecular Sciences, and Evolution & Ecology Research CentreUNSW SydneySydneyAustralia

Personalised recommendations