Strain Diversity and the Evolution of Antibiotic Resistance

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1019)


Drug resistance is best thought of as an ongoing biological process. Resistant bacteria must emerge, become established and ultimately transmit in order to be relevant to human health. In this context, genetic diversity can influence the rate and likelihood of resistance emerging; it can also modulate the net physiological impact of resistance and the propensity of an organism to improve any defects that arise from it. Combined, these effects can have an impact on a larger scale, with highly transmissible drug-resistant bacterial strains posing a formidable threat to global health. These considerations are pertinent to the future of tuberculosis control as well. In this chapter, we review our current understanding of the impact of genetic diversity in the broadest sense on the evolution of drug-resistant members of the Mycobacterium tuberculosis complex.


Drug resistance Evolution Epistasis Fitness Landscape 


  1. Agashe D, Martinez-Gomez NC, Drummond DA, Marx CJ (2013) Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol 30:549–560CrossRefPubMedGoogle Scholar
  2. As P (2002) Effect of Katg mutations on the virulence of mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 70:4955–4960CrossRefGoogle Scholar
  3. Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for mycobacterium tuberculosis. Emerg Infect Dis 10:1568–1577CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bisson GP, Mehaffy C, Broeckling C, Prenni J, Rifat D, Lun DS, Burgos M, Weissman D, Karakousis PC, Dobos K (2012) Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J Bacteriol 194:6441–6452CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscollà M, Rothe T, Hömke R, Ritter C et al (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blower SM, Chou T (2004) Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance. Nat Med 10: 1111–1116CrossRefPubMedGoogle Scholar
  7. Bonhoeffer S, Lipsitch M, Levin BR (1997) Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci U S A 94:12106–12111CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borrell S, Gagneux S (2009) Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis [State of the art]. Int J Tuberc Lung Dis 13:1456–1466PubMedGoogle Scholar
  9. Borrell S, Teo Y, Giardina F, Streicher EM, Klopper M, Feldmann J, Muller B, Victor TC, Gagneux S (2013) Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol Med Public Health 2013:65–74CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bos KI, Harkins KM, Herbig A, Coscollà M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brandis G, Hughes D (2013) Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 68:2493–2497CrossRefPubMedGoogle Scholar
  12. Brandis G, Wrande M, Liljas L, Hughes D (2012) Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 85:142–151CrossRefPubMedGoogle Scholar
  13. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912CrossRefPubMedGoogle Scholar
  14. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S et al (2014) Evolution and transmission of drug resistant tuberculosis in a Russian population. Nat Genet 46:279CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cohen T, Jenkins HE, Lu C, Mclaughlin M, Floyd K, Zignol M (2014) On the spread and control of MDR-TB epidemics: an examination of trends in anti-tuberculosis drug resistance surveillance data. Drug Resist Updat 17:105–123CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cohen KA, Abeel T, Mcguire AM, Desjardins CA, Munsamy V, Shea TP, Walker BJ, Bantubani N, Almeida DV, Alvarado L et al (2015) Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12:e1001880CrossRefPubMedPubMedCentralGoogle Scholar
  17. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503CrossRefPubMedPubMedCentralGoogle Scholar
  18. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110CrossRefGoogle Scholar
  19. Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26:431–444CrossRefPubMedPubMedCentralGoogle Scholar
  20. Da M (1954) Tubercle bacilli resistant to isoniazid: virulence and response to treatment with isoniazid in guinea-pigs. Br Med J 1:128–130CrossRefGoogle Scholar
  21. Dalal A, Pawaskar A, Das M, Desai R, Prabhudesai P, Chhajed P, Rajan S, Reddy D, Babu S, Jayalakshmi TK, Saranchuk P, Rodrigues C, Isaakidis P (2015) Resistance patterns among multidrug-resistant tuberculosis patients in greater metropolitan Mumbai: trends over time. PLoS One 10:e0116798CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J, Cho SN, Erokhin VV, Ershova J, Gler MT, Kazennyy BY, Kim HJ, Kliiman K, Kurbatova E, Kvasnovsky C, Leimane V, Van Der Walt M, Via LE, Volchenkov GV, Yagui MA, Kang H, Akksilp R, Sitti W, Wattanaamornkiet W, Andreevskaya SN, Chernousova LN, Demikhova OV, Larionova EE, Smirnova TG, Vasilieva IA, Vorobyeva AV, Barry CE 3rd, Cai Y, Shamputa IC, Bayona J, Contreras C, Bonilla C, Jave O, Brand J, Lancaster J, Odendaal R, Chen MP, Diem L, Metchock B, Tan K, Taylor A, Wolfgang M, Cho E, Eum SY, Kwak HK, Lee J, Lee J, Min S, Degtyareva I, Nemtsova ES, Khorosheva T, Kyryanova EV, Egos G, Perez MT, Tupasi T, Hwang SH, Kim CK, Kim SY, Lee HJ, Kuksa L, Norvaisha I, Skenders G, Sture I, Kummik T, Kuznetsova T, Somova T, Levina K, Pariona G, Yale G, Suarez C, Valencia E, Viiklepp P (2012) Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet 380:1406–1417CrossRefPubMedGoogle Scholar
  23. De Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, Mcadam KP, Corrah T, Small PM, Adegbola RA (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198:1037–1043CrossRefPubMedPubMedCentralGoogle Scholar
  24. De Knegt GJ, Bruning O, Marian T, De Jong M, Van Belkum A, Endtz HP, Breit TM, Bakker-Woudenberg IAJM, De Steenwinkel JEM (2013) Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93:96–101CrossRefPubMedGoogle Scholar
  25. De Vos M, Muller B, Borrell S, Black PA, Van Helden PD, Warren RM, Gagneux S, Victor TC (2013) Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dean AS, Zignol M, Falzon D, Getahun H, Floyd K (2014) HIV and multidrug-resistant tuberculosis: overlapping epidemics. Eur Respir J 44:251–254CrossRefPubMedGoogle Scholar
  27. Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827CrossRefPubMedGoogle Scholar
  28. Du Preez I, Loots DT (2012) Altered fatty acid metabolism due to rifampicin-resistance conferring mutations in the rpoB gene of Mycobacterium tuberculosis: mapping the potential of pharmaco-metabolomics for global health and personalized medicine. Omics: J Integr Biol 16:596–603CrossRefGoogle Scholar
  29. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, Balloux F (2015) Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6Google Scholar
  30. Escombe AR, Moore DA, Gilman RH, Pan W, Navincopa M, Ticona E, Martinez C, Caviedes L, Sheen P, Gonzalez A, Noakes CJ, Friedland JS, Evans CA (2008) The infectiousness of tuberculosis patients coinfected with HIV. PLoS Med 5:e188CrossRefPubMedPubMedCentralGoogle Scholar
  31. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A et al (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45:1183–1189CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fenner L, Egger M, Bodmer T, Altpeter E, Zwahlen M, Jaton K, Pfyffer GE, Borrell S, Dubuis O, Bruderer T, Siegrist HH, Furrer H, Calmy A, Fehr J, Stalder JM, Ninet B, Bottger EC, Gagneux S (2012) Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:3047–3053CrossRefPubMedPubMedCentralGoogle Scholar
  33. Feuerriegel S, Koser CU, Niemann S (2014) Phylogenetic polymorphisms in antibiotic resistance genes of the Mycobacterium tuberculosis complex. J Antimicrob Chemother 69:1205–1210CrossRefPubMedGoogle Scholar
  34. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784–790CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944–1946CrossRefPubMedGoogle Scholar
  36. Grandjean L, Gilman RH, Martin L, Soto E, Castro B, Lopez S, Coronel J, Castillo E, Alarcon V, Lopez V et al (2015) Transmission of multidrug-resistant and drug-susceptible tuberculosis within households: a prospective cohort study. PLoS Med 12:e1001843CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gygli S, Borrell S, Trauner A, Gagneux S (2017) FEMS Microbiol Rev 41(3):354–373 doi:  10.1093/femsre/fux011
  38. Hartkoorn RC, Uplekar S, COLE ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2979–2981CrossRefPubMedPubMedCentralGoogle Scholar
  39. Haver HL, Chua A, Ghode P, Lakshminarayana SB, Singhal A, Mathema B, Wintjens R, Bifani P (2015) Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:5316–5323CrossRefPubMedPubMedCentralGoogle Scholar
  40. Homolka S, Post E, Oberhauser B, George AG, Westman L, Dafae F, Rüsch-Gerdes S, Niemann S (2008) High genetic diversity among Mycobacterium tuberculosis complex strains from Sierra Leone. BMC Microbiol 8:1CrossRefGoogle Scholar
  41. Hu Y, Mathema B, Zhao Q, Rzheng X, Li D, Jiang W, Wang W, Xu B (2016) Comparison of the socio-demographic and clinical features of pulmonary TB patients infected with sub-lineages within the W-Beijing and non-Beijing Mycobacterium tuberculosis. Tuberc (Edinb) 97:18–25CrossRefGoogle Scholar
  42. Knight GM, Colijn C, Shrestha S, Fofana M, Cobelens F, White RG, Dowdy DW, Cohen T (2015) The distribution of fitness costs of resistance-conferring mutations is a key determinant for the future burden of drug-resistant tuberculosis: a model-based analysis. Clin Infect Dis 61(Suppl 3):S147–S154CrossRefPubMedCentralGoogle Scholar
  43. Koch A, Mizrahi V, Warner DF (2014) The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 3:e17CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–1522CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, Fortune SM, Moody DB (2016) Rifampin resistance mutations are associated with broad chemical remodeling of mycobacterium tuberculosis. J Biol Chem 291:14248–14256. jbc-M116CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lanzas F, Karakousis PC, Sacchettini JC, Ioerger TR (2013) Multidrug-resistant tuberculosis in panama is driven by clonal expansion of a multidrug-resistant Mycobacterium tuberculosis strain related to the KZN extensively drug-resistant M. tuberculosis strain from South Africa. J Clin Microbiol 51:3277–3285CrossRefPubMedPubMedCentralGoogle Scholar
  48. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A 112:8136–8141CrossRefPubMedPubMedCentralGoogle Scholar
  49. Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498CrossRefPubMedGoogle Scholar
  50. Mariam DH, Mengistu Y, Hoffner SE, Andersson DI (2004) Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:1289–1294CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M (2013) Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41:6175–6189CrossRefPubMedPubMedCentralGoogle Scholar
  52. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F et al (2013) Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 8:e82551CrossRefPubMedPubMedCentralGoogle Scholar
  53. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum MG, Rusch-Gerdes S, Mokrousov I, Aleksic E, Allix-Beguec C, Antierens A, Augustynowicz-Kopec E, Ballif M, Barletta F, Beck HP, Barry CE 3rd, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebaek T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T (2015) Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47:242–249CrossRefPubMedGoogle Scholar
  54. Moreno-Gamez S, Hill AL, Rosenbloom DI, Petrov DA, Nowak MA, Pennings PS (2015) Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A 112:E2874–E2883CrossRefPubMedPubMedCentralGoogle Scholar
  55. Muller B, Borrell S, Rose G, Gagneux S (2013a) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29:160–169CrossRefPubMedGoogle Scholar
  56. Muller B, Chihota VN, Pillay M, Klopper M, Streicher EM, Coetzee G, Trollip A, Hayes C, Bosman ME, Gey Van Pittius NC, Victor TC, Gagneux S, Van Helden PD, Warren RM (2013b) Programmatically selected multidrug-resistant strains drive the emergence of extensively drug-resistant tuberculosis in South Africa. PLoS One 8:e70919CrossRefPubMedPubMedCentralGoogle Scholar
  57. Munsiff SS, Nivin B, Sacajiu G, Mathema B, Bifani P, Kreiswirth BN (2003) Persistence of a highly resistant strain of tuberculosis in New York City during 1990-1999. J Infect Dis 188:356–363CrossRefPubMedGoogle Scholar
  58. Ochi k, Tanaka Y, Tojo S (2014) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol 41:403–414CrossRefPubMedGoogle Scholar
  59. Perlman DC, Segal Y, Rosenkranz S, Rainey PM, Remmel RP, Salomon N, Hafner R, Peloquin CA (2005) The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clin Infect Dis 41:1638–1647CrossRefPubMedGoogle Scholar
  60. Piton J, Petrella S, Delarue M, André-Leroux G, Jarlier V, Aubry A, Mayer C (2010) Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PLoS One 5:e12245CrossRefPubMedPubMedCentralGoogle Scholar
  61. Qi Q, Preston GM, Maclean RC (2014) Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. MBio 5:e01562–e01514PubMedPubMedCentralGoogle Scholar
  62. Reynolds MG (2000) Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156:1471–1481PubMedPubMedCentralGoogle Scholar
  63. Reynolds J, Heysell SK (2014) Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol 10:813–823CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER, Gawande R, Coscolla M, Gagneux S, Fortune SM, Lamers MH (2015) DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat Genet 47:677–681Google Scholar
  65. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6:e2CrossRefPubMedGoogle Scholar
  66. Skrahina A, Hurevich H, Zalutskaya A, Sahalchyk E, Astrauko A, Hoffner S, Rusovich V, Dadu A, De Colombani P, Dara M, Van Gemert W, Zignol M (2013) Multidrug-resistant tuberculosis in Belarus: the size of the problem and associated risk factors. Bull World Health Organ 91:36–45CrossRefPubMedGoogle Scholar
  67. Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung CS, Theiler J, Via LE, Boshoff HI, Murakami KS, Korber B, Barry CE 3rd, Cho SN (2014) Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the beta’ subunit of RNA polymerase. Mol Microbiol 91:1106–1119CrossRefPubMedPubMedCentralGoogle Scholar
  68. Spies FS, Ribeiro AW, Ramos DF, Ribeiro MO, Martin A, Palomino JC, Rossetti ML, Da Silva PE, Zaha A (2011) Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol 49:2625–2630CrossRefPubMedPubMedCentralGoogle Scholar
  69. Traore B, Diarra B, Dembele BPP, Somboro AM, Hammond AS, Siddiqui S, Maiga M, Kone B, Sarro YS, Washington J et al (2012) Molecular strain typing of Mycobacterium tuberculosis complex in Bamako, Mali. Int J Tuberc Lung Dis 16:911–916CrossRefPubMedGoogle Scholar
  70. Trauner A, Borrell S, Reither K, Gagneux S (2014) Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 74:1063–1072CrossRefPubMedPubMedCentralGoogle Scholar
  71. Van Doorn HR, De Haas PE, Kremer K, Vandenbroucke-Grauls CM, Borgdorff MW, Van Soolingen D (2006) Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at amino-acid position 315 of katG: a decade of experience in The Netherlands. Clin Microbiol Infect 12:769–775CrossRefPubMedGoogle Scholar
  72. Vogwill T, Kojadinovic M, Furió V, Maclean RC (2014) Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance. Mol Biol Evol. msu262 31(12):3314–3323 doi:  10.1093/molbev/msu262
  73. Vogwill T, Kojadinovic M, Maclean RC (2016) Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc R Soc B 283(1830):20160151Google Scholar
  74. (WHO), W. H. O (2016) Global tuberculosis report 2016. WHO, GenevaGoogle Scholar
  75. Wells CD, Cegielski JP, Nelson LJ, Laserson KF, Holtz TH, Finlay A, Castro KG, Weyer K (2007) HIV infection and multidrug-resistant tuberculosis: the perfect storm. J Infect Dis 196(Suppl 1):S86–107CrossRefPubMedGoogle Scholar
  76. Winglee K, Mcguire AM, Maiga M, Abeel T, Shea T, Desjardins CA, Diarra B, Baya B, Sanogo M, Diallo S et al (2016) Whole genome sequencing of mycobacterium africanum strains from Mali Provides insights into the mechanisms of geographic restriction. PLoS Negl Trop Dis 10:e0004332CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yang C, Luo T, Sun G, Qiao K, Sun G, Deriemer K, Mei J, Gao Q (2012) Mycobacterium tuberculosis Beijing strains favor transmission but not drug resistance in China. Clin Infect Dis 55:1179–1187CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yang C, Shen X, Peng Y, Lan R, Zhao Y, Long B, Luo T, Sun G, Li X, Qiao K, Gui X, Wu J, Xu J, Li F, Li D, Liu F, Shen M, Hong J, Mei J, Deriemer K, Gao Q (2015) Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis 61:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yuan L, Mi L, Li Y, Zhang H, Zheng F, Li Z (2016) Genotypic characteristics of Mycobacterium tuberculosis circulating in Xinjiang, China. Infect Dis (Lond) 48:108–115CrossRefGoogle Scholar
  80. Zhang Y, Yew WW (2015) Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 19:1276–1289CrossRefPubMedGoogle Scholar
  81. Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, Liu Z, Li C, Galwey N, Deng J et al (2013) Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 45:1255–1260CrossRefPubMedGoogle Scholar
  82. Zignol M, Van Gemert W, Falzon D, Sismanidis C, Glaziou P, Floyd K, Raviglione M (2012) Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007–2010. Bull World Health Organ 90:111–119dCrossRefPubMedGoogle Scholar
  83. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM, Dadu A, Dreyer A, Driesen M, Gilpin C, Hasan R, Hasan Z, Hoffner S, Husain A, Hussain A, Ismail N, Kamal M, Mansjo M, Mvusi L, Niemann S, Omar SV, Qadeer E, Rigouts L, Ruesch-Gerdes S, Schito M, Seyfaddinova M, Skrahina A, Tahseen S, Wells WA, Mukadi YD, Kimerling M, Floyd K, Weyer K, Raviglione MC (2016) Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect DisGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Swiss Tropical and Public Health InstituteBaselSwitzerland
  2. 2.University of BaselBaselSwitzerland

Personalised recommendations