Skip to main content

DNA Replication Fidelity in the Mycobacterium tuberculosis Complex

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1019)

Abstract

Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.

Keywords

  • Mutation rate
  • DNA polymerase
  • PHP domain
  • Drug resistance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR (2016) RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem Biol 23(3):381–391

    CrossRef  PubMed  Google Scholar 

  • Barreiro C, Ullan RV (2016) DNA-synthesizing enzymes as antibacterial targets. In: Villa TG, Vinas M (eds) New weapons to control bacterial growth. Springer International Publishing, Switzerland

    Google Scholar 

  • Barros T, Guenther J, Kelch B, Anaya J, Prabhakar A, O'Donnell M, Kuriyan J, Lamers MH (2013) A structural role for the PHP domain in E. coli DNA polymerase III. BMC Struct Biol 13:8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Basta T, Boum Y, Briffotaux J, Becker HF, Lamarre-Jouenne I, Lambry JC, Skouloubris S, Liebl U, Graille M, van Tilbeurgh H, Myllykallio H (2012) Mechanistic and structural basis for inhibition of thymidylate synthase ThyX. Open Biol 2:120120

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Biswas T, Resto-Roldan E, Sawyer SK, Artsimovitch I, Tsodikov OV (2013) A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Nucleic Acids Res 41(4):e56

    CrossRef  CAS  PubMed  Google Scholar 

  • Boritsch EC, Supply P, Honore N, Seeman T, Stinear TP, Brosch R (2014) A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 93:835–852. doi:10.1111/mmi.12720

    CrossRef  CAS  PubMed  Google Scholar 

  • Boshoff HI, Reed MB, Barry CE 3rd, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113(2):183–193

    CrossRef  CAS  PubMed  Google Scholar 

  • Brissett NC, Pitcher RS, Juarez R, Picher AJ, Green AJ, Dafforn TR, Fox GC, Blanco L, Doherty AJ (2007) Structure of a NHEJ polymerase-mediated DNA synaptic complex. Science 318(5849):456–459

    CrossRef  CAS  PubMed  Google Scholar 

  • Brotz-Oesterhelt H, Knezevic I, Bartel S, Lampe T, Warnecke-Eberz U, Ziegelbauer K, Habich D, Labischinski H (2003) Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. J Biol Chem 278(41):39435–39442

    CrossRef  PubMed  Google Scholar 

  • Bull JJ, Wilke CO (2008) Lethal mutagenesis of bacteria. Genetics 180(2):1061–1070

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • CDC (2013) Antiobiotic resistance threats in the United States. Centres for Disease Conotrl and Prevention

    Google Scholar 

  • Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13(6):632–642

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9(3):e91024

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98(12):6895–6900

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Culyba MJ, Mo CY, Kohli RM (2015) Targets for combating the evolution of acquired antibiotic resistance. Biochemistry 54(23):3573–3582

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin KH, Nathan CF (2005) Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 73(8):4581–4587

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawes SS, Warner DF, Tsenova L, Timm J, McKinney JD, Kaplan G, Rubin H, Mizrahi V (2003) Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 71(11):6124–6131

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, Tonjum T, Sola C, Matic I, Gicquel B (2008) Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS One 3(2):e1538

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Drake JW (1999) The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci 870:100–107

    CrossRef  CAS  PubMed  Google Scholar 

  • Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA, Alvarez X, Ratterree M, Be NA, Lamichhane G, Jain SK, Lacey MR, Lackner AA, Kaushal D (2010) Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 201(11):1743–1752

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Elleingand E, Gerez C, Un S, Knupling M, Lu G, Salem J, Rubin H, Sauge-Merle S, Laulhere JP, Fontecave M (1998) Reactivity studies of the tyrosyl radical in ribonucleotide reductase from Mycobacterium tuberculosis and Arabidopsis thaliana – comparison with Escherichia coli and mouse. Eur J Biochem 258(2):485–490

    CrossRef  CAS  PubMed  Google Scholar 

  • Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PK, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45(10):1183–1189

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Fijalkowska IJ, Schaaper RM, Jonczyk P (2012) DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 36(6):1105–1121

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Fivian-Hughes AS, Houghton J, Davis EO (2012) Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiol-Sgm 158:1388–1388

    CrossRef  CAS  Google Scholar 

  • Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43(5):482–486

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45(7):784–790

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajadeera C, Willby MJ, Green KD, Shaul P, Fridman M, Garneau-Tsodikova S, Posey JE, Tsodikov OV (2015) Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. J Antibiot (Tokyo) 68(3):153–157

    CrossRef  CAS  Google Scholar 

  • Galagan JE (2014) Genomic insights into tuberculosis. Nat Rev Genet 15(5):307–320

    CrossRef  CAS  PubMed  Google Scholar 

  • Gamulin V, Cetkovic H, Ahel I (2004) Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis. FEMS Microbiol Lett 238(1):57–63

    CAS  PubMed  Google Scholar 

  • Georgieva ER, Narvaez AJ, Hedin N, Graslund A (2008) Secondary structure conversions of Mycobacterium tuberculosis ribonucleotide reductase protein R2 under varying pH and temperature conditions. Biophys Chem 137(1):43–48

    CrossRef  CAS  PubMed  Google Scholar 

  • Ghosh S, Samaddar S, Kirtania P, Das Gupta SK (2015) A DinB ortholog enables mycobacterial growth under dTTP-limiting conditions induced by the expression of a mycobacteriophage-derived ribonucleotide reductase gene. J Bacteriol 198(2):352–362

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gong C, Martins A, Bongiorno P, Glickman M, Shuman S (2004) Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 279(20):20594–20606

    CrossRef  CAS  PubMed  Google Scholar 

  • Gordhan BG, Andersen SJ, De Meyer AR, Mizrahi V (1996) Construction by homologous recombination and phenotypic characterization of a DNA polymerase domain polA mutant of Mycobacterium smegmatis. Gene 178(1–2):125–130

    CrossRef  CAS  PubMed  Google Scholar 

  • Gorna AE, Bowater RP, Dziadek J (2010) DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 119(5):187–202

    CrossRef  Google Scholar 

  • Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L (2016) The b2 clamp in the Mycobacterium tuberculosis DNA polymerase III ab2e replicase promotes polymerization and reduces exonuclease activity. Sci Rep 6:18418

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerstad M, Rohr AK, Andersen NH, Graslund A, Hogbom M, Andersson KK (2014) The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits. J Biol Inorg Chem 19(6):893–902

    CrossRef  CAS  PubMed  Google Scholar 

  • Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hoagland DT, Liu J, Lee RB, Lee RE (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter JH, Pang CKT, Gujjar R, Rathod PK (2008) Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS One 3(5):e2237

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ishino S, Nishi Y, Oda S, Uemori T, Sagara T, Takatsu N, Yamagami T, Shirai T, Ishino Y (2016) Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res 44(7):2977–2986

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kana BD, Abrahams GL, Sung N, Warner DF, Gordhan BG, Machowski EE, Tsenova L, Sacchettini JC, Stoker NG, Kaplan G, Mizrahi V (2010) Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J Bacteriol 192(8):2220–2227

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, Konig C, Ammerman NC, Barrio MB, Borchers K, Bordon-Pallier F, Bronstrup M, Courtemanche G, Gerlitz M, Geslin M, Hammann P, Heinz DW, Hoffmann H, Klieber S, Kohlmann M, Kurz M, Lair C, Matter H, Nuermberger E, Tyagi S, Fraisse L, Grosset JH, Lagrange S, Muller R (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348(6239):1106–1112

    CrossRef  CAS  PubMed  Google Scholar 

  • Korycka-Machala M, Rychta E, Brzostek A, Sayer HR, Rumijowska-Galewicz A, Bowater RP, Dziadek J (2007) Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob Agents Chemother 51(8):2888–2897

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuron A, Korycka-Machala M, Brzostek A, Nowosielski M, Doherty A, Dziadek B, Dziadek J (2014) Evaluation of DNA primase DnaG as a potential target for antibiotics. Antimicrob Agents Chemother 58(3):1699–1706

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274(5290):1208–1211

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 109(41):E2774–E2783

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman IR (1974) DNA ligase: structure, mechanism, and function. Science 186(4166):790–797

    CrossRef  CAS  PubMed  Google Scholar 

  • Lillebaek T, Dirksen A, Baess I, Strunge B, Thomsen VO, Andersen AB (2002) Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J Infect Dis 185(3):401–404

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu A, Potsch S, Davydov A, Barra AL, Rubin H, Graslund A (1998) The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket. Biochemistry 37(46):16369–16377

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu AM, Barra AL, Rubin H, Lu GZ, Graslund A (2000) Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field electron paramagnetic resonance. J Am Chem Soc 122(9):1974–1978

    CrossRef  CAS  Google Scholar 

  • Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci U S A 96(4):1492–1497

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF (2014) Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69(2):292–302

    CrossRef  CAS  PubMed  Google Scholar 

  • Miggiano R, Casazza V, Garavaglia S, Ciaramella M, Perugino G, Rizzi M, Rossi F (2013) Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol 195(12):2728–2736

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills SD, Eakin AE, Buurman ET, Newman JV, Gao N, Huynh H, Johnson KD, Lahiri S, Shapiro AB, Walkup GK, Yang W, Stokes SS (2011) Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 55(3):1088–1096

    CrossRef  CAS  PubMed  Google Scholar 

  • Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD (2015) Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother 59(9):5097–5106

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrahi V, Andersen SJ (1998) DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol 29(6):1331–1339

    CrossRef  CAS  PubMed  Google Scholar 

  • Mizrahi V, Huberts P (1996) Deoxy- and dideoxynucleotide discrimination and identification of critical 5′ nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis. Nucleic Acids Res 24(24):4845–4852

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12(4):1467–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mowa MB, Warner DF, Kaplan G, Kana BD, Mizrahi V (2009) Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol 191(3):985–995

    CrossRef  CAS  PubMed  Google Scholar 

  • Nandakumar M, Prosser GA, de Carvalho LP, Rhee K (2015) Metabolomics of Mycobacterium tuberculosis. Methods Mol Biol 1285:105–115

    CrossRef  CAS  PubMed  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288(5469):1251–1254

    CrossRef  CAS  PubMed  Google Scholar 

  • Ordonez H, Shuman S (2014) Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res 42(20):12722–12734

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ordonez H, Uson ML, Shuman S (2014) Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 42(17):11056–11070

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter RE, Adam GC, Arocho M, DiNunzio E, Donald RG, Dorso K, Genilloud O, Gill C, Goetz M, Hairston NN, Murgolo N, Nare B, Olsen DB, Powles M, Racine F, Su J, Vicente F, Wisniewski D, Xiao L, Hammond M, Young K (2015) Elucidation of DnaE as the antibacterial target of the natural product, Nargenicin. Chem Biol 22(10):1362–1373

    CrossRef  CAS  PubMed  Google Scholar 

  • Podos SD, Thanassi JA, Pucci MJ (2012) Mechanistic assessment of DNA ligase as an antibacterial target in Staphylococcus aureus. Antimicrob Agents Chemother 56(8):4095–4102

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO (2003) The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 50(3):1031–1042

    CrossRef  CAS  PubMed  Google Scholar 

  • Robinson A, Causer RJ, Dixon NE (2012) Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 13(3):352–372

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER, Gawande R, Coscolla M, Gagneux S, Fortune SM, Lamers MH (2015) DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat Genet 47(6):677–681

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e2

    CrossRef  PubMed  Google Scholar 

  • Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100(22):12989–12994

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JW, Randall JR, Matthews LA, Simmons LA (2015) Ribonucleotides in bacterial DNA. Crit Rev Biochem Mol Biol 50(3):181–193

    CrossRef  CAS  PubMed  Google Scholar 

  • Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN (2013) Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen 18(7):761–781

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Nair DT (2012) MsDpo4-a DinB Homolog from Mycobacterium smegmatis-is an error-prone DNA polymerase that can promote G:T and T:G mismatches. J Nucleic Acids 2012:285481

    PubMed  PubMed Central  Google Scholar 

  • Simmons LA, Foti JJ, Cohen SE, Walker GC (2008) The SOS regulatory network. EcoSal Plus 3(1)

    Google Scholar 

  • Singh V, Brecik M, Mukherjee R, Evans JC, Svetlikova Z, Blasko J, Surade S, Blackburn J, Warner DF, Mikusova K, Mizrahi V (2015) The complex mechanism of antimycobacterial action of 5-fluorouracil. Chem Biol 22(1):63–75

    CrossRef  CAS  PubMed  Google Scholar 

  • Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO (2012) Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 287(26):22004–22014

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava SK, Dube D, Tewari N, Dwivedi N, Tripathi RP, Ramachandran R (2005a) Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Nucleic Acids Res 33(22):7090–7101

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava SK, Tripathi RP, Ramachandran R (2005b) NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 280(34):30273–30281

    CrossRef  CAS  PubMed  Google Scholar 

  • Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry CE 3rd, Mei J, Gao Q (2012) Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 206(11):1724–1733

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Timinskas K, Balvociute M, Timinskas A, Venclovas C (2014) Comprehensive analysis of DNA polymerase III alpha subunits and their homologs in bacterial genomes. Nucleic Acids Res 42(3):1393–1413

    CrossRef  CAS  PubMed  Google Scholar 

  • Uppsten M, Davis J, Rubin H, Uhlin U (2004) Crystal structure of the biologically active form of class 1b ribonucleotide reductase small subunit from Mycobacterium tuberculosis. FEBS Lett 569(1–3):117–122

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang Y, Huang Y, Xue C, He Y, He ZG (2011) ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage-inducible genes in mycobacteria. J Biol Chem 286(36): 31159–31167

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner DF, Etienne G, Wang XM, Matsoso LG, Dawes SS, Soetaert K, Stoker NG, Content J, Mizrahi V (2006) A derivative of Mycobacterium smegmatis mc2155 that lacks the duplicated chromosomal region. Tuberculosis 86(6):438–444

    CrossRef  CAS  PubMed  Google Scholar 

  • Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas C, Mizrahi V (2010) Essential roles for imuA′- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(29):13093–13098

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner DF, Tonjum T, Mizrahi V (2014) DNA metabolism in mycobacterial pathogenesis. Curr Top Microbiol 374:27–51

    Google Scholar 

  • Warner DF, Koch A, Mizrahi V (2015) Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol 23(1):14–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Werngren J, Hoffner SE (2003) Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol 41(4):1520–1524

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Lu G, Rubin H (1994) Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression, and purification of the large subunit. J Bacteriol 176(21):6738–6743

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Curran SC, Li LS, Avarbock D, Graf JD, Chua MM, Lu G, Salem J, Rubin H (1997) Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit. J Bacteriol 179(20):6408–6415

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Nandakumar J, Aniukwu J, Wang LK, Glickman MS, Lima CD, Shuman S (2006) Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proc Natl Acad Sci U S A 103(6):1711–1716

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS (2012) Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 51(51):10147–10158

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a subcontract from the US National Institute of Child Health and Human Development (NICHD) U01HD085531-02 (to D.F.W.); the South African Medical Research Council (to V.M.); the National Research Foundation of South Africa (to D.F.W. and V.M.); a Senior International Research Scholars grant from the Howard Hughes Medical Institute (to V.M.); a Helen Hay Whitney fellowship (to J.M.R.); an NIH Director’s New Innovator Award 1DP20D001378 (to S.F.), and a subcontract from NIAID U19 AI107774-0 (to S.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Digby F. Warner or Valerie Mizrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warner, D.F., Rock, J.M., Fortune, S.M., Mizrahi, V. (2017). DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_13

Download citation