Epidemiology of Drug-Resistant Tuberculosis

  • Anna S. Dean
  • Helen Cox
  • Matteo Zignol
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1019)


As we move into the era of the Sustainable Development Goals (SDGs), the World Health Organization (WHO) has developed the End TB strategy 2016–2035 with a goal to end the global epidemic of tuberculosis (TB) by 2035. Achieving the targets laid out in the Strategy will require strengthening of the whole TB diagnosis and treatment cascade, including improved case detection, the establishment of universal drug susceptibility testing and rapid treatment initiation. An estimated 3.9% of new TB cases and 21% of previously treated cases had rifampicin-resistant (RR) or multidrug-resistant (MDR) TB in 2015. These levels have remained stable over time, although limited data are available from major high burden settings. In addition to the emergence of drug resistance due to inadequate treatment, there is growing evidence that direct transmission is a large contributor to the RR/MDR-TB epidemic. Only 340,000 of the estimated 580,000 incident cases of RR/MDR-TB were notified to WHO in 2015. Among these, only 125,000 were initiated on second-line treatment. RR/MDR-TB epidemics are likely to be driven by direct transmission. The most important risk factor for MDR-TB is a history of previous treatment. Other risk factors vary according to setting but can include hospitalisation, incarceration and HIV infection. Children have the same risk of MDR-TB as adults and represent a diagnostic and treatment challenge. Rapid molecular technologies have revolutionized the diagnosis of drug-resistant TB. Until capacity can be established to test every TB patient for rifampicin resistance, countries should focus on gradually expanding their coverage of testing. DNA sequencing technologies are being increasingly incorporated into patient management and drug resistance surveillance. They offer additional benefits over conventional culture-based phenotypic testing, including a faster turn-around time for results, assessment of resistance patterns to a range of drugs, and investigation of strain clustering and transmission.


Epidemiology Surveillance Antimicrobial Resistance Transmission Diagnostics 


  1. Aia P, Kal M, Lavu E et al (2016) The burden of drug-resistant tuberculosis in Papua New Guinea: results of a large population-based survey. PLoS One 11:e0149806. doi: 10.1371/journal.pone.0149806 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almeida D, Rodrigues C, Ashavaid TF et al (2005) High incidence of the Beijing genotype among multidrug-resistant isolates of Mycobacterium tuberculosis in a tertiary care center in Mumbai, India. Clin Infect Dis 40:881–886CrossRefPubMedGoogle Scholar
  3. Billington OJ, McHugh TD, Gillespie SH (1999) Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43:1866–1869PubMedPubMedCentralGoogle Scholar
  4. Blower SM, Chou T (2004) Modeling the emergence of the “hot zones”: tuberculosis and the amplification dynamics of drug resistance. Nat Med 10:1111–1116CrossRefPubMedGoogle Scholar
  5. Borgdorff MW (2004) New measurable indicator for tuberculosis case detection. Emerg Infect Dis 10:1523–1528. doi: 10.3201/eid1009.040349 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caminero JA (2008) Likelihood of generating MDR-TB and XDR-TB under adequate National Tuberculosis Control Programme implementation. Int J Tuberc Lung Dis 12:869–877PubMedGoogle Scholar
  7. Centers for Disease Control (CDC) (1991) Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons – Florida and New York, 1988–1991. MMWR Morb Mortal Wkly Rep 40:585–591Google Scholar
  8. Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10:1117–1121CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cohen T, Colijn C, Finklea B et al (2008) Are survey-based estimates of the burden of drug resistant TB too low? Insight from a simulation study. PLoS One 3:e2363. doi: 10.1371/journal.pone.0002363 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cohen T, Hedt BL, Pagano M (2010) Estimating the magnitude and direction of bias in tuberculosis drug resistance surveys conducted only in the public sector: a simulation study. BMC Public Health 10:355. doi: 10.1186/1471-2458-10-355 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cohen T, Jenkins HE, Lu C et al (2014) On the spread and control of MDR-TB epidemics: an examination of trends in anti-tuberculosis drug resistance surveillance data. Drug Resist Updat 17:105–123. doi: 10.1016/j.drup.2014.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coninx R, Maher D, Reyes H, Grzemska M (2000) Tuberculosis in prisons in countries with high prevalence. BMJ 320:440–442CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coronado VG, Beck-Sague CM, Hutton MD et al (1993) Transmission of multidrug-resistant Mycobacterium tuberculosis among persons with human immunodeficiency virus infection in an urban hospital: epidemiologic and restriction fragment length polymorphism analysis. J Infect Dis 168:1052–1055CrossRefPubMedGoogle Scholar
  14. Cox HS, McDermid C, Azevedo V et al (2010) Epidemic levels of drug resistant tuberculosis (MDR and XDR-TB) in a high HIV prevalence setting in Khayelitsha, South Africa. PLoS One 5:e13901. doi: 10.1371/journal.pone.0013901 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crofton J, Mitchison DA (1948) Streptomycin resistance in pulmonary tuberculosis. BMJ 2:1009–1015CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dean AS, Zignol M, Falzon D et al (2014) HIV and multidrug-resistant tuberculosis: overlapping epidemics. Eur Respir J 44:251–254. doi: 10.1183/09031936.00205413 CrossRefPubMedGoogle Scholar
  17. Dye C, Williams BG (2000) Criteria for the control of drug-resistant tuberculosis. Proc Natl Acad Sci U S A 97:8180–8185CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edlin BR, Tokars JI, Grieco MH et al (1992) An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med 326:1514–1521. doi: 10.1056/NEJM199206043262302 CrossRefPubMedGoogle Scholar
  19. Frieden TR, Sterling T, Pablos-Mendez A et al (1993) The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 328:521–526. doi: 10.1056/NEJM199302253280801 CrossRefPubMedGoogle Scholar
  20. Frieden TR, Sherman LF, Maw KL et al (1996) A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA 276:1229–1235CrossRefPubMedGoogle Scholar
  21. Gagneux S, Burgos MV, DeRiemer K et al (2006) Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2:e61. doi: 10.1371/journal.ppat.0020061 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gandhi NR, Moll A, Sturm AW et al (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368:1575–1580CrossRefPubMedGoogle Scholar
  23. Gandhi NR, Weissman D, Moodley P et al (2013) Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis 207:9–17. doi: 10.1093/infdis/jis631 CrossRefPubMedGoogle Scholar
  24. Gelmanova IY, Keshavjee S, Golubchikova VT et al (2007) Barriers to successful tuberculosis treatment in Tomsk, Russian Federation: non-adherence, default and the acquisition of multidrug resistance. Bull World Health Organ 85:703–711CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guerra-Assunção JA, Crampin AC, RMGJ H et al (2015) Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife. doi: 10.7554/eLife.05166
  26. Habeenzu C, Mitarai S, Lubasi D et al (2007) Tuberculosis and multidrug resistance in Zambian prisons, 2000–2001. Int J Tuberc Lung Dis 11:1216–1220PubMedGoogle Scholar
  27. Heidebrecht CL, Podewils LJ, Pym A et al (2016) Assessing loval risk of rifampicin-resistant tuberculosis in KwaZulu-Natal, South Africa using lot quality assurance sampling. PLoS One 11:e0153143CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jenkins HE, Plesca V, Ciobanu A et al (2013) Assessing spatial heterogeneity of multidrug-resistant tuberculosis in a high-burden country. Eur Respir J 42:1291–1301. doi: 10.1183/09031936.00111812 CrossRefPubMedGoogle Scholar
  29. Jenkins HE, Gegia M, Furin J et al (2014a) Geographical heterogeneity of multidrug-resistant tuberculosis in Georgia, January 2009 to June 2011. Euro Surveill 19:20743CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jenkins HE, Tolman AW, Yuen CM et al (2014b) Incidence of multidrug-resistant tuberculosis disease in children: systematic review and global estimates. Lancet 383:1572–1579. doi: 10.1016/S0140-6736(14)60195-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kendall EA, Fofana MO, Dowdy DW (2015) Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med 3:963–972. doi: 10.1016/S2213-2600(15)00458-0 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kimerling ME, Kluge H, Vezhnina N et al (1999) Inadequacy of the current WHO re-treatment regimen in a central Siberian prison: treatment failure and MDR-TB. Int J Tuberc Lung Dis 3:451–453PubMedGoogle Scholar
  33. Klopper M, Warren RM, Hayes C et al (2013) Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 19:449–455. doi: 10.3201//EID1903.120246 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lukoye D, Ssengooba W, Musisi K et al (2015) Variation and risk factors of drug resistant tuberculosis in Sub-Saharan Africa: a systematic review and meta-analysis. BMC Public Health 15:291. doi: 10.1186/s12889-015-1614-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mesfin YM, Hailemariam D, Biadglign S, Kibret KT (2014) Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis. PLoS One 9:e82235. doi: 10.1371/journal.pone.0082235 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mlambo CK, Warren RM, Poswa X et al (2008) Genotypic diversity of extensively drug-resistant tuberculosis (XDR-TB) in South Africa. Int J Tuberc Lung Dis 12:99–104PubMedGoogle Scholar
  37. Monno L, Angarano G, Carbonara S et al (1991) Emergence of drug-resistant Mycobacterium tuberculosis in HIV-infected patients. Lancet 337:852CrossRefPubMedGoogle Scholar
  38. Murase Y, Maeda S, Yamada H et al (2010) Clonal expansion of multidrug-resistant and extensively drug-resistant tuberculosis, Japan. Emerg Infect Dis 16:948–954. doi: 10.3201/eid1606.091844 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nardell E, Dharmadhikari A (2010) Turning off the spigot: reducing drug-resistant tuberculosis transmission in resource-limited settings. Int J Tuberc Lung Dis 14:1233–1243PubMedPubMedCentralGoogle Scholar
  40. Nodieva A, Jansone I, Broka L et al (2010) Recent nosocomial transmission and genotypes of multidrug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 14:427–433PubMedGoogle Scholar
  41. Pablos-Méndez A, Raviglione MC, Laszlo A et al (1998) Global surveillance for antituberculosis-drug resistance, 1994–1997. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med 338:1641–1649. doi: 10.1056/NEJM199806043382301 CrossRefPubMedGoogle Scholar
  42. Paramasivan CN, Venkataraman P (2004) Drug resistance in tuberculosis in India. Indian J Med Res 120:377–386PubMedGoogle Scholar
  43. Perdigao J, Macedo R, Malaquias A et al (2010) Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J Antimicrob Chemother 65:224–227. doi: 10.1093/jac/dkp452 CrossRefPubMedGoogle Scholar
  44. Rifat M, Hall J, Oldmeadow C et al (2015) Factors related to previous tuberculosis treatment of patients with multidrug-resistant tuberculosis in Bangladesh. BMJ Open 5:e008273. doi: 10.1136/bmjopen-2015-008273 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rigouts L, Nolasco O, de Rijk P et al (2007) Newly developed primers for comprehensive amplification of the rpoB gene and detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 45:252–254. doi: 10.1128/JCM.01489-06 CrossRefPubMedGoogle Scholar
  46. Roetzer A, Diel R, Kohl TA et al (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387. doi: 10.1371/journal.pmed.1001387 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schnippel K, Meyer-Rath G, Long L et al (2013) Diagnosing Xpert MTB/RIF negative TB: impact and cost of alternative algorithms for South Africa. S Afr Med J 103:101–106. doi: 10.7196/samj.6182 CrossRefPubMedGoogle Scholar
  48. Shenoi SV, Escombe AR, Friedland G (2010) Transmission of drug-susceptible and drug-resistant tuberculosis and the critical importance of airborne infection control in the era of HIV infection and highly active antiretroviral therapy rollouts. Clin Infect Dis 50(Suppl 3):S231–S237. doi: 10.1086/651496 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stuckler D, Basu S, Mckee M, King L (2008) Mass incarceration can explain population increases in TB and multidrug-resistant TB in European and central Asian countries. P Natl Acad Sci USA 105:13280–13285. doi: 10.1073/pnas.0801200105 CrossRefGoogle Scholar
  50. Ulmasova D, Uzakova G, Tillyashayhov M et al (2013) Multidrug-resistant tuberculosis in Uzbekistan: results of a nationwide survey, 2010 to 2011. Euro Surveill. doi:20609 [pii]
  51. Uplekar M, Weil D, Lonnroth K et al (2015) WHO’s new end TB strategy. Lancet 385:1799–1801. doi: 10.1016/S0140-6736(15)60570-0 CrossRefPubMedGoogle Scholar
  52. van den Hof S, Tursynbayeva A, Abildaev T et al (2015) HIV and multidrug-resistant tuberculosis: overlapping risk factors. Eur Respir J 45:567–569. doi: 10.1183/09031936.00131014 CrossRefPubMedGoogle Scholar
  53. Wells CD, Cegielski JP, Nelson LJ et al (2007) HIV infection and multidrug-resistant tuberculosis: the perfect storm. J Infect Dis 196(Suppl 1):S86–107. doi: 10.1086/518665 CrossRefPubMedGoogle Scholar
  54. World Health Organization (2013) The use of bedaquiline in the treatment of multidrug-resistant tuberculosis. Interim policy guidance. WHO/HTM/TB/2013.6. GenevaGoogle Scholar
  55. World Health Organization (2014a) Drug-resistant TB – surveillance and response. Supplement to global tuberculosis report 2014. WHO/HQ/TB/2014.12. GenevaGoogle Scholar
  56. World Health Organization (2014b) Global tuberculosis report 2014. WHO/HTM/TB/2014.08. GenevaGoogle Scholar
  57. World Health Organization (2014c) Xpert MTB/RIF implementation manual. Technical and operational “how-to”: practical considerationsGoogle Scholar
  58. World Health Organization (2014d) The use of delamanid in the treatment of multidrug-resistant tuberculosis. WHO/HTM/TB2014.23. GenevaGoogle Scholar
  59. World Health Organization (2016) Global tuberculosis report 2015. GenevaGoogle Scholar
  60. World Health Organization WHO End TB Strategy.
  61. Zelner JL, Murray MB, Becerra MC et al (2016) Identifying hotspots of multidrug-resistant tuberculosis transmission using spatial and molecular genetic data. J Infect Dis 213:287–294. doi: 10.1093/infdis/jiv387 CrossRefPubMedGoogle Scholar
  62. Zhao Y, Xu S, Wang L et al (2012) National survey of drug-resistant tuberculosis in China. N Engl J Med 366:2161–2170. doi: 10.1056/NEJMoa1108789 CrossRefPubMedGoogle Scholar
  63. Zignol M, Sismanidis C, Falzon D et al (2013) Multidrug-resistant tuberculosis in children: evidence from global surveillance. Eur Respir J 42:701–707. doi: 10.1183/09031936.00175812 CrossRefPubMedGoogle Scholar
  64. Zignol M, Dean A, Falzon D, et al (2016) Twenty years of global surveillance of anti-tuberculosis drug resistance: key achievements and findings, remaining challenges, future directionGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Global TB ProgrammeWorld Health OrganizationGenevaSwitzerland
  2. 2.Division of Medical Microbiology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa

Personalised recommendations